Department of Physics, The Hong Kong University of Science and Technology, China.
Department of Computer Science, Cornell University, Ithaca, 14850, New York, United States.
Biosens Bioelectron. 2025 Jan 1;267:116781. doi: 10.1016/j.bios.2024.116781. Epub 2024 Sep 12.
In-vitro blood purification is essential to a wide range of medical treatments, requiring fine-grained analysis and precise separation of blood components. Despite existing methods that can extract specific components from blood by size or by magnetism, there is not yet a general approach to efficiently filter blood components on demand. In this work, we introduce the first programmable non-contact blood purification system for accurate blood component detection and extraction. To accurately identify different cells and artificial particles in the blood, we collected and annotated a new blood component object detection dataset and trained a collection of deep-learning-based object detectors upon it. To precisely capture and extract desired blood components, we fabricated a microfluidic chip and set up a customized holographic optical tweezer to trap and move cells/particles in the blood. Empirically, we demonstrate that our proposed system can perform real-time blood fractionation with high precision reaching up to 96.89%, as well as high efficiency. Its scalability and flexibility open new research directions in blood treatment.
体外血液净化对于广泛的医疗治疗至关重要,需要对血液成分进行精细的分析和精确的分离。尽管现有的方法可以通过大小或磁性从血液中提取特定的成分,但还没有一种通用的方法可以根据需要有效地过滤血液成分。在这项工作中,我们引入了第一个可编程的非接触式血液净化系统,用于精确的血液成分检测和提取。为了准确识别血液中的不同细胞和人工颗粒,我们收集并注释了一个新的血液成分目标检测数据集,并在其上训练了一组基于深度学习的目标检测器。为了精确地捕获和提取所需的血液成分,我们制造了一个微流控芯片,并设置了一个定制的全息光学镊子来捕获和移动血液中的细胞/颗粒。实验表明,我们提出的系统可以实现高精度的实时血液分离,精度高达 96.89%,同时效率也很高。它的可扩展性和灵活性为血液治疗开辟了新的研究方向。