Department of Neurology, Oslo University Hospital, Oslo, Norway.
Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
J Neural Eng. 2024 Sep 30;21(5). doi: 10.1088/1741-2552/ad7c7e.
The accurate localization of electroencephalography (EEG) electrode positions is crucial for accurate source localization. Recent advancements have proposed alternatives to labor-intensive, manual methods for spatial localization of the electrodes, employing technologies such as 3D scanning and laser scanning. These novel approaches often integrate magnetic resonance imaging (MRI) as part of the pipeline in localizing the electrodes. The limited global availability of MRI data restricts its use as a standard modality in several clinical scenarios. This limitation restricts the use of these advanced methods.In this paper, we present a novel, versatile approach that utilizes 3D scans to localize EEG electrode positions with high accuracy. Importantly, while our method can be integrated with MRI data if available, it is specifically designed to be highly effective even in the absence of MRI, thus expanding the potential for advanced EEG analysis in various resource-limited settings. Our solution implements a two-tiered approach involving landmark/fiducials localization and electrode localization, creating an end-to-end framework.The efficacy and robustness of our approach have been validated on an extensive dataset containing over 400 3D scans from 278 subjects. The framework identifies pre-auricular points and achieves correct electrode positioning accuracy in the range of 85.7% to 91.0%. Additionally, our framework includes a validation tool that permits manual adjustments and visual validation if required.This study represents, to the best of the authors' knowledge, the first validation of such a method on a substantial dataset, thus ensuring the robustness and generalizability of our innovative approach. Our findings focus on developing a solution that facilitates source localization, without the need for MRI, contributing to the critical discussion on balancing cost effectiveness with methodological accuracy to promote wider adoption in both research and clinical settings.
脑电图(EEG)电极位置的精确定位对于准确的源定位至关重要。最近的进展提出了替代传统劳动密集型、手动方法的方案,用于电极的空间定位,采用 3D 扫描和激光扫描等技术。这些新方法通常将磁共振成像(MRI)集成到电极定位的管道中。MRI 数据在全球范围内的有限可用性限制了其在一些临床情况下作为标准模式的使用。这种限制限制了这些先进方法的使用。
在本文中,我们提出了一种新颖、通用的方法,利用 3D 扫描以高精度定位 EEG 电极位置。重要的是,虽然我们的方法可以与 MRI 数据集成(如果可用),但它专门设计为即使在没有 MRI 的情况下也能非常有效,从而在各种资源有限的环境中扩展了先进 EEG 分析的潜力。我们的解决方案实现了一种两级方法,涉及地标/基准定位和电极定位,创建了一个端到端框架。
我们的方法在一个包含 278 名受试者的超过 400 个 3D 扫描的大型数据集上进行了验证,其有效性和鲁棒性得到了验证。该框架可以识别耳前点,并在 85.7%至 91.0%的范围内实现正确的电极定位精度。此外,我们的框架还包括一个验证工具,如果需要,可以进行手动调整和可视化验证。
就作者所知,这是在大量数据集上首次对这种方法进行验证,从而确保了我们创新方法的稳健性和通用性。我们的研究重点是开发一种不需要 MRI 即可促进源定位的解决方案,为在研究和临床环境中更广泛地采用成本效益与方法准确性之间的平衡进行了重要的讨论。