Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands.
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands; NatMEG, Karolinska Institute, Solnavägen 1, 171 77 Solna, Sweden.
J Neurosci Methods. 2019 Oct 1;326:108378. doi: 10.1016/j.jneumeth.2019.108378. Epub 2019 Jul 31.
In this study, we evaluated the use of a structured-light 3D scanner for EEG electrode digitization. We tested its accuracy, robustness and evaluated its practical feasibility. Furthermore, we assessed how 3D scanning of EEG electrode positions affects the accuracy of EEG volume conduction models and source localization.
To assess the improvement in electrode positions and source results, we compared the electrode positions both at the scalp level and by quantifying source model accuracy between the 3D scanner, generic template, and cap-specific electrode positions.
The use of the 3D scanner significantly improves the accuracy of EEG electrode positions to a median error of 9.4 mm and maximal error of 32.8 mm, relative to the custom (median error of 10.9 mm, maximal error 39.1 mm) and manufacturer's template positions (median error of 13.8 mm, maximal error 57.0 mm). The relative difference measure (RDM) of the EEG source model averaged over the brain improves from 0.18 to 0.11. The dipole localization error averaged over the brain improves from 11.4 mm to 7.0 mm.
A structured-light 3D scanner improves the electrode position accuracy and thereby the EEG source model accuracy. It is more affordable than systems currently used for this, and allows for robust and fast digitization. Therefore, we consider it a cost and time-efficient way to improve EEG source reconstruction.
在这项研究中,我们评估了使用结构光 3D 扫描仪对 EEG 电极进行数字化的效果。我们测试了它的准确性、稳健性,并评估了其实用可行性。此外,我们评估了 3D 扫描 EEG 电极位置对 EEG 容积传导模型和源定位准确性的影响。
为了评估电极位置和源结果的改善,我们比较了 3D 扫描仪、通用模板和帽特定电极位置在头皮水平和通过量化源模型准确性方面的电极位置。
与定制(中位数误差为 10.9 毫米,最大误差为 39.1 毫米)和制造商模板位置(中位数误差为 13.8 毫米,最大误差为 57.0 毫米)相比,使用 3D 扫描仪可显著提高 EEG 电极位置的准确性,中位数误差为 9.4 毫米,最大误差为 32.8 毫米。脑内 EEG 源模型的相对差异度量(RDM)从 0.18 提高到 0.11。脑内平均的偶极子定位误差从 11.4 毫米提高到 7.0 毫米。
结构光 3D 扫描仪可提高电极位置准确性,从而提高 EEG 源模型准确性。它比目前用于此目的的系统更经济实惠,并允许进行稳健快速的数字化。因此,我们认为这是一种提高 EEG 源重建的成本效益和时间效益的方法。