Suppr超能文献

深度学习探秘:通过新颖的鱼缸试验分析预测斑马鱼的焦虑。

Deep learning dives: Predicting anxiety in zebrafish through novel tank assay analysis.

机构信息

School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.

School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.

出版信息

Physiol Behav. 2024 Dec 1;287:114696. doi: 10.1016/j.physbeh.2024.114696. Epub 2024 Sep 16.

Abstract

Behavior is fundamental to neuroscience research, providing insights into the mechanisms underlying thoughts, actions and responses. Various model organisms, including mice, flies, and fish, are employed to understand these mechanisms. Zebrafish, in particular, serve as a valuable model for studying anxiety-like behavior, typically measured through the novel tank diving (NTD) assay. Traditional methods for analyzing NTD assays are either manually intensive or costly when using specialized software. To address these limitations, it is useful to develop methods for the automated analysis of zebrafish NTD assays using deep-learning models. In this study, we classified zebrafish based on their anxiety levels using DeepLabCut. Subsequently, based on a training dataset of image frames, we compared deep-learning models to identify the model best suited to classify zebrafish as anxious or non anxious and found that specific architectures, such as InceptionV3, are able to effectively perform this classification task. Our findings suggest that these deep learning models hold promise for automated behavioral analysis in zebrafish, offering an efficient and cost-effective alternative to traditional methods.

摘要

行为是神经科学研究的基础,为理解思维、行为和反应的机制提供了深入的见解。包括老鼠、苍蝇和鱼类在内的各种模式生物被用于研究这些机制。斑马鱼特别适合用于研究类似焦虑的行为,通常通过新颖的鱼缸潜水(NTD)实验来测量。传统的 NTD 实验分析方法要么非常繁琐,要么使用专业软件时成本很高。为了解决这些限制,使用深度学习模型开发用于自动化分析斑马鱼 NTD 实验的方法非常有用。在这项研究中,我们使用 DeepLabCut 根据斑马鱼的焦虑水平对其进行分类。随后,基于图像帧的训练数据集,我们比较了深度学习模型,以确定最适合将斑马鱼分类为焦虑或不焦虑的模型,结果发现特定的架构,如 InceptionV3,能够有效地执行此分类任务。我们的研究结果表明,这些深度学习模型有望在斑马鱼中实现自动化行为分析,为传统方法提供了一种高效且具有成本效益的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验