You Sung-Hye, Kim Byungjun, Kim InSeong, Yang Kyung-Sook, Kim Kyung Min, Kim Bo Kyu, Shin Jae Ho
Department of Radiology, Anam Hospital, Korea University College of Medicine, Korea (S.-H.Y., B.K., K.M.K., B.K.K., J.H.S.).
Department of Radiology, Anam Hospital, Korea University College of Medicine, Korea (S.-H.Y., B.K., K.M.K., B.K.K., J.H.S.).
Acad Radiol. 2025 Feb;32(2):932-950. doi: 10.1016/j.acra.2024.08.034. Epub 2024 Sep 17.
The role of MR imaging in patients with cognitive impairment is to evaluate each component of Alzheimer's disease (AD), small vessel disease (SVD), and glymphatic function. We want to validate the diagnostic performance of the comprehensive interpretation of these parameters to predict the cognitive impairment stage. MATERIALS AND METHODS: This retrospective single-center study included 359 patients with cognitive impairment who had undergone MRI (FLAIR, T2WI, 3D-T1WI, susceptibility-weighted imaging, and diffusion tensor imaging [DTI]) and a neuropsychological screening battery between January 2020 and July 2022. Each AD and SVD-related MR parameter was visually evaluated, and DTI analysis along the perivascular space (ALPS) index was calculated. Volumetry analysis was performed using Neurophet AQUA AI-based software. Using logistic regression analysis, four types of models were developed and compared by adding the components in the following order: (1) clinical factors and AD, (2) SVD, (3) glymphatic function-related MR parameters, and (4) volumetric data. Chi-square automatic interaction detection algorithm was used to develop diagnostic tree analysis (DTA) model to predict late-stage cognitive impairment.
APOE4 status, years of education, medial temporal lobe atrophy score, Fazekas scale score, DTI-ALPS index, and white matter hyperintensity were significant predictors of late-stage cognitive impairment. The performance of the prediction model increased from Model 1 to Model 4 (AUC: 0.880, 0.899, 0.914, and 0.945, respectively). The overall accuracy of the DTA model was 87.47%.
Integrative brain MRI assessments in patients with cognitive impairment, AD, SVD, and glymphatic function-related MR parameters, improve the prediction of late-stage cognitive impairment.
磁共振成像(MR成像)在认知障碍患者中的作用是评估阿尔茨海默病(AD)、小血管病(SVD)和类淋巴功能的各个组成部分。我们希望验证对这些参数进行综合解读以预测认知障碍阶段的诊断性能。材料与方法:这项回顾性单中心研究纳入了2020年1月至2022年7月期间接受过MRI检查(液体衰减反转恢复序列[FLAIR]、T2加权成像[T2WI]、三维T1加权成像[3D-T1WI]、磁敏感加权成像和扩散张量成像[DTI])以及神经心理筛查量表评估的359例认知障碍患者。对每个与AD和SVD相关的MR参数进行视觉评估,并计算沿血管周围间隙的扩散张量成像分析(ALPS)指数。使用基于Neurophet AQUA人工智能的软件进行容积分析。通过逻辑回归分析,按以下顺序添加各组成部分,开发并比较了四种类型的模型:(1)临床因素和AD,(2)SVD,(3)类淋巴功能相关的MR参数,(4)容积数据。使用卡方自动交互检测算法开发诊断树分析(DTA)模型以预测晚期认知障碍。结果:APOE4状态、受教育年限、内侧颞叶萎缩评分、 Fazekas量表评分、DTI-ALPS指数和白质高信号是晚期认知障碍的显著预测因素。预测模型的性能从模型1到模型4逐步提高(曲线下面积[AUC]分别为0.880、0.899、0.914和0.945)。DTA模型的总体准确率为87.47%。结论:对认知障碍患者进行综合脑MRI评估,结合AD、SVD和类淋巴功能相关的MR参数,可改善对晚期认知障碍的预测。