Jiang Heng, Tsoi Chi Chung, Yu Weixing, Ma Mengchao, Li Mingjie, Wang Zuankai, Zhang Xuming
Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China.
Photonics Research Institute (PRI), The Hong Kong Polytechnic University, 999077, Hong Kong, China.
Light Sci Appl. 2024 Sep 18;13(1):256. doi: 10.1038/s41377-024-01580-5.
Natural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection. Particularly, it is challenging to mimic the apposition modality to effectively transmit light rays collected by many microlenses on a curved surface to a flat imaging sensor chip while preserving their spatial relationships without interference. In this study, we integrate 271 lensed polymer optical fibres into a dome-like structure to faithfully mimic the structure of NCE. Our ACE has several parameters comparable to the NCEs: 271 ommatidia versus 272 for bark beetles, and 180 field of view (FOV) versus 150-180 FOV for most arthropods. In addition, our ACE outperforms the typical NCEs by ~100 times in dynamic response: 31.3 kHz versus 205 Hz for Glossina morsitans. Compared with other reported ACEs, our ACE enables real-time, 180 panoramic direct imaging and depth estimation within its nearly infinite depth of field. Moreover, our ACE can respond to an angular motion up to 5.6×10 deg/s with the ability to identify translation and rotation, making it suitable for applications to capture high-speed objects, such as surveillance, unmanned aerial/ground vehicles, and virtual reality.
自然选择促使节肢动物进化出具有独特解剖结构的奇妙天然复眼(NCEs),为人工复眼(ACEs)在复杂环境中实现静态和动态感知提供了极具前景的蓝图。具体而言,每个NCE利用一系列小眼,即成像单元,分布在曲面上以具备诸多优点。这激发了许多使用各种微透镜阵列的ACEs的开发,但报道的ACEs在静态成像和运动检测方面性能有限。特别是,模仿并列模式将曲面上多个微透镜收集的光线有效传输到平面成像传感器芯片,同时保持它们的空间关系而不产生干扰,是一项具有挑战性的任务。在本研究中,我们将271根带透镜的聚合物光纤集成到穹顶状结构中,以忠实地模仿NCE的结构。我们的ACE具有几个与NCE相当的参数:271个小眼,而树皮甲虫为272个;180°视野(FOV),而大多数节肢动物为150 - 180°FOV。此外,我们的ACE在动态响应方面比典型的NCEs高出约100倍:31.3kHz,而采采蝇为205Hz。与其他报道的ACEs相比,我们的ACE能够在其几乎无限的景深范围内进行实时、180°全景直接成像和深度估计。此外,我们的ACE能够以高达5.6×10°/s的角速度响应,具备识别平移和旋转的能力,使其适用于捕获高速物体的应用,如监视、无人空中/地面车辆以及虚拟现实。