Suppr超能文献

基于随机森林-反向传播神经网络耦合模型的多灾害易损性评估:以杭州市为例

Susceptibility assessment of multi-hazards using random forest-back propagation neural network coupling model: a Hangzhou city case study.

作者信息

Yu Bofan, Xing Huaixue, Yan Jiaxing

机构信息

China Geological Survey Nanjing Center, Nanjing, 210016, People's Republic of China.

China University of Geosciences (Wuhan), The Institute of Geological Survey of China University of Geosciences (Wuhan), Wuhan, 430074, People's Republic of China.

出版信息

Sci Rep. 2024 Sep 18;14(1):21783. doi: 10.1038/s41598-024-71053-7.

Abstract

As the demand for regional geological disaster risk assessments in large cities continues to rise, our study selected Hangzhou, one of China's megacities, as a model to evaluate the susceptibility to two major geological hazards in the region: ground collapse and ground subsidence. Given that susceptibility assessments for such disasters mainly rely on knowledge-driven models, and data-driven models have significant potential for application, we proposed a high-accuracy Random Forest-Back Propagation Neural Network Coupling Model. By using nine evaluation factors selected based on field surveys and expert recommendations, along with disaster data, the model's predictive results indicate a 3-40% improvement in model performance metrics such as AUC, accuracy, precision, recall, and F1-score, compared to single models and traditional SVM and logistic regression models. Ultimately, using the predictive results of this model, we created susceptibility maps for individual disasters and developed a muti-hazards susceptibility map by employing the expert weight discrimination method and the overlay evaluation method. Furthermore, we discussed the feature importance in the prediction process. Our study validated the feasibility of using advanced machine learning models for urban geological disaster assessment, providing a replicable template for other cities.

摘要

随着大城市对区域地质灾害风险评估的需求持续上升,我们的研究选取了中国特大城市之一的杭州作为模型,以评估该地区两种主要地质灾害——地面塌陷和地面沉降的易发性。鉴于此类灾害的易发性评估主要依赖知识驱动模型,而数据驱动模型具有显著的应用潜力,我们提出了一种高精度的随机森林 - 反向传播神经网络耦合模型。通过使用基于实地调查和专家建议选取的九个评估因子以及灾害数据,该模型的预测结果表明,与单一模型以及传统支持向量机和逻辑回归模型相比,在AUC、准确率、精确率、召回率和F1分数等模型性能指标方面有3% - 40%的提升。最终,利用该模型的预测结果,我们绘制了单个灾害的易发性地图,并采用专家权重判别法和叠加评估法绘制了多灾种易发性地图。此外,我们还讨论了预测过程中的特征重要性。我们的研究验证了使用先进机器学习模型进行城市地质灾害评估的可行性,为其他城市提供了可复制的模板。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f904/11410961/82761fc103f2/41598_2024_71053_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验