Suppr超能文献

用于自动导引车调度的混合量子-经典计算

Hybrid quantum-classical computation for automatic guided vehicles scheduling.

作者信息

Śmierzchalski Tomasz, Pawłowski Jakub, Przybysz Artur, Pawela Łukasz, Puchała Zbigniew, Koniorczyk Mátyás, Gardas Bartłomiej, Deffner Sebastian, Domino Krzysztof

机构信息

Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland.

Institute of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland.

出版信息

Sci Rep. 2024 Sep 18;14(1):21809. doi: 10.1038/s41598-024-72101-y.

Abstract

Motivated by recent efforts to develop quantum computing for practical, industrial-scale challenges, we demonstrate the effectiveness of state-of-the-art hybrid (not necessarily quantum) solvers in addressing the business-centric optimization problem of scheduling Automatic Guided Vehicles (AGVs). Some solvers can already leverage noisy intermediate-scale quantum (NISQ) devices. In our study, we utilize D-Wave hybrid solvers that implement classical heuristics with potential assistance from a quantum processing unit. This hybrid methodology performs comparably to existing classical solvers. However, due to the proprietary nature of the software, the precise contribution of quantum computation remains unclear. Our analysis focuses on a practical, business-oriented scenario: scheduling AGVs within a factory constrained by limited space, simulating a realistic production setting. Our approach maps a realistic AGVs problem onto one reminiscent of railway scheduling and demonstrates that the AGVs problem is better suited to quantum computing than its railway counterpart, the latter being denser in terms of the average number of constraints per variable. The main idea here is to highlight the potential usefulness of a hybrid approach for handling AGVs scheduling problems of practical sizes. We show that a scenario involving up to 21 AGVs, significant due to possible deadlocks, can be efficiently addressed by a hybrid solver in seconds.

摘要

受近期为应对实际工业规模挑战而开发量子计算的努力所推动,我们展示了最先进的混合(不一定是量子)求解器在解决以业务为中心的自动导引车(AGV)调度优化问题方面的有效性。一些求解器已经可以利用有噪声的中规模量子(NISQ)设备。在我们的研究中,我们使用了D-Wave混合求解器,它在量子处理单元的潜在协助下实现经典启发式算法。这种混合方法的性能与现有的经典求解器相当。然而,由于软件的专有性质,量子计算的确切贡献仍不明确。我们的分析集中在一个实际的、面向业务的场景:在空间有限的工厂内调度AGV,模拟现实的生产环境。我们的方法将一个现实的AGV问题映射到一个让人联想到铁路调度的问题上,并证明AGV问题比其铁路对应问题更适合量子计算,后者在每个变量的平均约束数量方面更密集。这里的主要思想是突出混合方法在处理实际规模的AGV调度问题方面的潜在有用性。我们表明,一个涉及多达21辆AGV的场景,由于可能出现死锁而很重要,混合求解器可以在几秒钟内有效地解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/961a/11410796/5a02b0ef57b4/41598_2024_72101_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验