Department of Chemistry, Stanford University, Stanford, CA, USA.
Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
Nature. 2024 Sep;633(8031):941-951. doi: 10.1038/s41586-024-07950-8. Epub 2024 Sep 18.
Subcellular protein localization regulates protein function and can be corrupted in cancers and neurodegenerative diseases. The rewiring of localization to address disease-driving phenotypes would be an attractive targeted therapeutic approach. Molecules that harness the trafficking of a shuttle protein to control the subcellular localization of a target protein could enforce targeted protein relocalization and rewire the interactome. Here we identify a collection of shuttle proteins with potent ligands amenable to incorporation into targeted relocalization-activating molecules (TRAMs), and use these to relocalize endogenous proteins. Using a custom imaging analysis pipeline, we show that protein steady-state localization can be modulated through molecular coupling to shuttle proteins containing sufficiently strong localization sequences and expressed in the necessary abundance. We analyse the TRAM-induced relocalization of different proteins and then use nuclear hormone receptors as shuttles to redistribute disease-driving mutant proteins such as SMARCB1, TDP43 and FUS. TRAM-mediated relocalization of FUS to the nucleus from the cytoplasm correlated with a reduction in the number of stress granules in a model of cellular stress. With methionyl aminopeptidase 2 and poly(ADP-ribose) polymerase 1 as endogenous cytoplasmic and nuclear shuttles, respectively, we demonstrate relocalization of endogenous PRMT9, SOS1 and FKBP12. Small-molecule-mediated redistribution of nicotinamide nucleotide adenylyltransferase 1 from nuclei to axons in primary neurons was able to slow axonal degeneration and pharmacologically mimic the genetic WldS gain-of-function phenotype in mice resistant to certain types of neurodegeneration. The concept of targeted protein relocalization could therefore inspire approaches for treating disease through interactome rewiring.
亚细胞蛋白定位调节蛋白质功能,并可能在癌症和神经退行性疾病中受到损害。针对驱动疾病表型的定位重排将是一种有吸引力的靶向治疗方法。利用穿梭蛋白的运输来控制靶蛋白亚细胞定位的分子可以强制靶向蛋白重定位并重新构建互作网络。在这里,我们鉴定了一系列具有强大配体的穿梭蛋白,这些配体可用于构建靶向重定位激活分子(TRAMs),并利用这些分子来重新定位内源性蛋白质。使用定制的成像分析管道,我们表明通过与包含足够强定位序列的穿梭蛋白进行分子偶联并以必要的丰度表达,可以调节蛋白质的稳态定位。我们分析了不同蛋白质的 TRAM 诱导重定位,然后使用核激素受体作为穿梭蛋白将疾病驱动的突变蛋白(如 SMARCB1、TDP43 和 FUS)重新分布到细胞核中。FUS 从细胞质到细胞核的 TRAM 介导的重定位与细胞应激模型中应激颗粒数量的减少相关。使用甲硫氨酰氨肽酶 2 和多聚(ADP-核糖)聚合酶 1 分别作为内源性细胞质和核穿梭蛋白,我们证明了内源性 PRMT9、SOS1 和 FKBP12 的重定位。小分子介导的烟酰胺核苷酸腺嘌呤二核苷酸转酰胺酶 1 从核到轴突的重新分布能够减缓轴突退化,并在对某些类型神经退行性变具有抗性的小鼠中模拟遗传 WldS 获得性功能的表型。因此,靶向蛋白重定位的概念可以为通过互作网络重排来治疗疾病提供新的思路。