Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Nature. 2024 Oct;634(8032):85-90. doi: 10.1038/s41586-024-07951-7. Epub 2024 Sep 18.
Materials with hierarchical architectures that combine soft and hard material domains with coalesced interfaces possess superior properties compared with their homogeneous counterparts. These architectures in synthetic materials have been achieved through deterministic manufacturing strategies such as 3D printing, which require an a priori design and active intervention throughout the process to achieve architectures spanning multiple length scales. Here we harness frontal polymerization spin mode dynamics to autonomously fabricate patterned crystalline domains in poly(cyclooctadiene) with multiscale organization. This rapid, dissipative processing method leads to the formation of amorphous and semi-crystalline domains emerging from the internal interfaces generated between the solid polymer and the propagating cure front. The size, spacing and arrangement of the domains are controlled by the interplay between the reaction kinetics, thermochemistry and boundary conditions. Small perturbations in the fabrication conditions reproducibly lead to remarkable changes in the patterned microstructure and the resulting strength, elastic modulus and toughness of the polymer. This ability to control mechanical properties and performance solely through the initial conditions and the mode of front propagation represents a marked advancement in the design and manufacturing of advanced multiscale materials.
具有软、硬材料域以及合并界面的分层结构的材料具有比同质对应物更优异的性能。这些合成材料中的结构是通过确定性制造策略实现的,例如 3D 打印,这需要在整个过程中进行预先设计和主动干预,以实现跨越多个长度尺度的结构。在这里,我们利用正相聚合旋转模式动力学,在聚环辛二烯中自主制备具有多尺度组织的图案化结晶域。这种快速、耗散的处理方法导致无定形和半结晶域在固体聚合物和传播固化前沿之间产生的内部界面处形成。域的大小、间距和排列由反应动力学、热化学和边界条件之间的相互作用控制。制造条件中的微小扰动可重复性地导致图案化微观结构和聚合物的强度、弹性模量和韧性发生显著变化。仅通过初始条件和前沿传播模式来控制机械性能和性能的能力代表了先进多尺度材料设计和制造的重大进展。