Suppr超能文献

具有亚体素控制的细丝旋转多材料打印。

Rotational multimaterial printing of filaments with subvoxel control.

作者信息

Larson Natalie M, Mueller Jochen, Chortos Alex, Davidson Zoey S, Clarke David R, Lewis Jennifer A

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2023 Jan;613(7945):682-688. doi: 10.1038/s41586-022-05490-7. Epub 2023 Jan 18.

Abstract

Helical structures are ubiquitous in nature and impart unique mechanical properties and multifunctionality. So far, synthetic architectures that mimic these natural systems have been fabricated by winding, twisting and braiding of individual filaments, microfluidics, self-shaping and printing methods. However, those fabrication methods are unable to simultaneously create and pattern multimaterial, helically architected filaments with subvoxel control in arbitrary two-dimensional (2D) and three-dimensional (3D) motifs from a broad range of materials. Towards this goal, both multimaterial and rotational 3D printing of architected filaments have recently been reported; however, the integration of these two capabilities has yet to be realized. Here we report a rotational multimaterial 3D printing (RM-3DP) platform that enables subvoxel control over the local orientation of azimuthally heterogeneous architected filaments. By continuously rotating a multimaterial nozzle with a controlled ratio of angular-to-translational velocity, we have created helical filaments with programmable helix angle, layer thickness and interfacial area between several materials within a given cylindrical voxel. Using this integrated method, we have fabricated functional artificial muscles composed of helical dielectric elastomer actuators with high fidelity and individually addressable conductive helical channels embedded within a dielectric elastomer matrix. We have also fabricated hierarchical lattices comprising architected helical struts containing stiff springs within a compliant matrix. Our additive-manufacturing platform opens new avenues to generating multifunctional architected matter in bioinspired motifs.

摘要

螺旋结构在自然界中无处不在,并赋予独特的机械性能和多功能性。到目前为止,模仿这些自然系统的合成结构已通过单根细丝的缠绕、扭转和编织、微流体、自成型和打印方法制造出来。然而,这些制造方法无法同时创建并图案化具有亚体素控制的多材料螺旋结构细丝,这些细丝具有来自多种材料的任意二维(2D)和三维(3D)图案。为了实现这一目标,最近已有关于结构化细丝的多材料和旋转3D打印的报道;然而,这两种能力的整合尚未实现。在此,我们报告了一种旋转多材料3D打印(RM-3DP)平台,该平台能够对方位角异质结构化细丝的局部取向进行亚体素控制。通过以受控的角向与平移速度比连续旋转多材料喷嘴,我们在给定的圆柱形体素内创建了具有可编程螺旋角、层厚和几种材料之间界面面积的螺旋细丝。使用这种集成方法,我们制造了由螺旋介电弹性体致动器组成的功能性人造肌肉,其具有高保真度且在介电弹性体基质中嵌入了可单独寻址的导电螺旋通道。我们还制造了分层晶格,其包含在柔顺基质中含有刚性弹簧的结构化螺旋支柱。我们的增材制造平台为生成受生物启发图案的多功能结构化物质开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验