Ningbo Innovation Center, Zhejiang University, Ningbo, China.
The Affiliated People's Hospital of Ningbo University, Ningbo, China.
Sci Rep. 2024 Sep 18;14(1):21767. doi: 10.1038/s41598-024-72507-8.
Anxiety among pregnant women can significantly impact their overall well-being. However, the development of data-driven HCI interventions for this demographic is often hindered by data scarcity and collection challenges. In this study, we leverage the Empatica E4 wristband to gather physiological data from pregnant women in both resting and relaxed states. Additionally, we collect subjective reports on their anxiety levels. We integrate features from signals including Blood Volume Pulse (BVP), Skin Temperature (SKT), and Inter-Beat Interval (IBI). Employing a Support Vector Machine (SVM) algorithm, we construct a model capable of evaluating anxiety levels in pregnant women. Our model attains an emotion recognition accuracy of 69.3%, marking achievements in HCI technology tailored for this specific user group. Furthermore, we introduce conceptual ideas for biofeedback on maternal emotions and its interactive mechanism, shedding light on improved monitoring and timely intervention strategies to enhance the emotional health of pregnant women.
孕妇的焦虑会显著影响她们的整体健康。然而,针对这一人群开发数据驱动的人机交互干预措施常常受到数据稀缺和收集挑战的阻碍。在这项研究中,我们利用 Empatica E4 腕带从处于休息和放松状态的孕妇身上收集生理数据。此外,我们还收集了她们焦虑水平的主观报告。我们整合了包括脉搏容积 (BVP)、皮肤温度 (SKT) 和心动间隔 (IBI) 在内的信号的特征。我们使用支持向量机 (SVM) 算法构建了一个能够评估孕妇焦虑水平的模型。我们的模型达到了 69.3%的情绪识别准确率,这在针对特定用户群体的人机交互技术方面取得了进展。此外,我们还提出了关于母婴情绪生物反馈及其交互机制的概念性想法,为改善孕妇的情绪健康提供了更有效的监测和及时干预策略。