School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, Beijing, 100193, China.
BMC Biol. 2024 Sep 18;22(1):211. doi: 10.1186/s12915-024-02011-y.
Phosphorus-solubilizing bacteria (PSB) are vital in converting insoluble phosphorus into a soluble form that plants can readily absorb and utilize in soil. While previous studies have mainly focused on the extracellular secretion of microorganisms, few have explored the intricate intracellular metabolic processes involved in PSB-mediated phosphorus solubilization.
Here, we uncovered that Ca(PO) could serve as a source of insoluble phosphorus for the PSB, Pseudomonas sp. NK2. High-performance liquid chromatography (HPLC) results indicated higher levels of organic acids released from insoluble phosphorus compared to a soluble phosphorus source (KHPO), with acetic acid released exclusively under insoluble phosphorus condition. Moreover, non-target metabolomics was employed to delve into the intracellular metabolic profile. It unveiled that insoluble phosphorus significantly enhanced the tricarboxylic acid cycle, glycolysis, glyoxylic acid metabolism, and other pathways, leading to the production of acetic acid, gluconic acid, oxalic acid, and citric acid for insoluble phosphorus solubilization. In our quest to identify suitable biochar carriers, we assessed seven types of biochar through the conjoint analysis of NBRIP medium culture and application to soil for 30 days, with cotton straw-immobilized NK2 emerging as the most potent phosphorus content provider. Lastly, NK2 after cotton straw immobilization demonstrated the ability to enhance biomass, plant height, and root development of Solanum lycopersicum L. cv. Micro Tom.
Pseudomonas sp. NK2 with cotton straw biochar could enhance phosphorus availability and tomato growth. These findings bear significant implications for the practical application of phosphorus-solubilizing bacteria in agricultural production and the promotion of environmentally sustainable farming practices.
解磷菌(PSB)在将不溶性磷转化为植物可在土壤中轻易吸收和利用的可溶性形式方面起着至关重要的作用。虽然之前的研究主要集中在微生物的细胞外分泌,但很少有研究探索涉及 PSB 介导的磷溶解的复杂细胞内代谢过程。
在这里,我们发现 Ca(PO) 可以作为 PSB 假单胞菌 NK2 的不溶性磷源。高效液相色谱 (HPLC) 结果表明,与可溶性磷源 (KHPO) 相比,从不溶性磷中释放出更高水平的有机酸,而仅在不溶性磷条件下释放出乙酸。此外,非靶向代谢组学被用来深入研究细胞内代谢谱。结果表明,不溶性磷显著增强了三羧酸循环、糖酵解、乙醛酸代谢和其他途径,导致产生用于不溶性磷溶解的乙酸、葡萄糖酸、草酸和柠檬酸。在寻找合适的生物炭载体的过程中,我们通过 NBRIP 培养基培养和 30 天土壤应用的联合分析评估了七种类型的生物炭,其中棉花秸秆固定化 NK2 表现出最强的磷含量提供能力。最后,棉花秸秆固定化后的 NK2 表现出增强番茄 Lycopersicum esculentum L. cv. Micro Tom 生物量、株高和根系发育的能力。
具有棉花秸秆生物炭的假单胞菌 NK2 可以提高磷的有效性和番茄的生长。这些发现对 PSB 在农业生产中的实际应用和促进环境可持续农业实践具有重要意义。