Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
CNS Neurosci Ther. 2024 Sep;30(9):e70051. doi: 10.1111/cns.70051.
The early stages of Alzheimer's disease (AD) are no longer insurmountable. Therefore, identifying at-risk individuals is of great importance for precise treatment. We developed a model to predict cognitive deterioration in patients with mild cognitive impairment (MCI).
Based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we constructed models in a derivation cohort of 761 participants with MCI (138 of whom developed dementia at the 36th month) and verified them in a validation cohort of 353 cognitively normal controls (54 developed MCI and 19 developed dementia at the 36th month). In addition, 1303 participants with available AD cerebrospinal fluid core biomarkers were selected to clarify the ability of the model to predict AD core features. We assessed 32 parameters as candidate predictors, including clinical information, blood biomarkers, and structural imaging features, and used multivariable logistic regression analysis to develop our prediction model.
Six independent variables of MCI deterioration were identified: apolipoprotein E ε4 allele status, lower Mini-Mental State Examination scores, higher levels of plasma pTau181, smaller volumes of the left hippocampus and right amygdala, and a thinner right inferior temporal cortex. We established an easy-to-use risk heat map and risk score based on these risk factors. The area under the curve (AUC) for both internal and external validations was close to 0.850. Furthermore, the AUC was above 0.800 in identifying participants with high brain amyloid-β loads. Calibration plots demonstrated good agreement between the predicted probability and actual observations in the internal and external validations.
We developed and validated an accurate prediction model for dementia conversion in patients with MCI. Simultaneously, the model predicts AD-specific pathological changes. We hope that this model will contribute to more precise clinical treatment and better healthcare resource allocation.
阿尔茨海默病(AD)的早期阶段不再难以逾越。因此,识别高危个体对于精准治疗非常重要。我们开发了一种模型,用于预测轻度认知障碍(MCI)患者的认知恶化。
基于阿尔茨海默病神经影像学倡议(ADNI)数据库,我们构建了一个在包含 761 名 MCI 患者的推导队列(其中 138 名在第 36 个月时发展为痴呆)中的模型,并在一个包含 353 名认知正常对照者的验证队列(其中 54 名在第 36 个月时发展为 MCI,19 名发展为痴呆)中进行了验证。此外,我们选择了 1303 名有可用 AD 脑脊液核心生物标志物的参与者来阐明该模型预测 AD 核心特征的能力。我们评估了 32 个参数作为候选预测指标,包括临床信息、血液生物标志物和结构影像学特征,并使用多变量逻辑回归分析来开发我们的预测模型。
确定了 MCI 恶化的六个独立变量:载脂蛋白 E ε4 等位基因状态、较低的简易精神状态检查评分、较高的血浆 pTau181 水平、左侧海马体和右侧杏仁核体积较小,以及右侧下颞叶皮质较薄。我们基于这些危险因素建立了一个易于使用的风险热图和风险评分。内部和外部验证的曲线下面积(AUC)均接近 0.850。此外,在识别具有高脑淀粉样β负荷的参与者时,AUC 高于 0.800。校准图显示内部和外部验证中预测概率与实际观察结果之间具有良好的一致性。
我们开发并验证了一个用于预测 MCI 患者痴呆转化的准确预测模型。同时,该模型预测了 AD 特异性的病理变化。我们希望该模型将有助于更精准的临床治疗和更好的医疗资源分配。