Suppr超能文献

从儿童和青少年的静息态 fMRI 预测个体表现和言语智力得分。

Prediction of individual performance and verbal intelligence scores from resting-state fMRI in children and adolescents.

机构信息

School of Mathematics and Statistics, Zhoukou Normal University, No. 6, Middle Section of Wenchang Avenue, Chuanhui District, Zhoukou, People's Republic of China.

School of Foreign Languages, Zhoukou Normal University, Zhoukou, People's Republic of China.

出版信息

Int J Dev Neurosci. 2024 Nov;84(7):779-790. doi: 10.1002/jdn.10375. Epub 2024 Sep 18.

Abstract

The neuroimaging basis of intelligence remains elusive; however, there is a growing body of research employing connectome-based predictive modeling to estimate individual intelligence scores, aiming to identify the optimal set of neuroimaging features for accurately predicting an individual's cognitive abilities. Compared to adults, the disparities in cognitive performance among children and adolescents are more likely to captivate individuals' interest and attention. Limited research has been dedicated to exploring neuroimaging markers of intelligence specifically in the pediatric population. In this study, we utilized resting-state functional magnetic resonance imaging (fMRI) and intelligence quotient (IQ) scores of 170 healthy children and adolescents obtained from a public database to identify brain functional connectivity markers associated with individual intellectual behavior. Initially, we extracted and summarized relevant resting-state features from whole-brain or functional network connectivity that were most pertinent to IQ scores. Subsequently, these features were employed to establish prediction models for both performance and verbal IQ scores. Within a 10-fold cross-validation framework, our findings revealed that prediction models based on whole-brain functional connectivity effectively predicted performance IQ scores( ) but not verbal IQ scores( ). Results of prediction models based on brain functional network connectivity further demonstrated the exceptional predictive ability of the default mode network (DMN) and fronto-parietal task control network (FTPN) for performance IQ scores ( ). The above findings have also been validated using an independent dataset. Our findings suggest that the performance IQ of children and adolescents primarily relies on the connectivity of brain regions associated with DMN and FTPN. Moreover, variations in intellectual performance during childhood and adolescences are closely linked to alterations in brain functional network connectivity.

摘要

智能的神经影像学基础仍然难以捉摸;然而,越来越多的研究采用连接组学预测建模来估计个体的智力分数,旨在确定用于准确预测个体认知能力的最佳神经影像学特征集。与成年人相比,儿童和青少年的认知表现差异更有可能引起人们的兴趣和关注。针对儿童群体的智力神经影像学标志物的研究有限。在这项研究中,我们利用来自公共数据库的 170 名健康儿童和青少年的静息态功能磁共振成像 (fMRI) 和智商 (IQ) 评分,以确定与个体智力行为相关的大脑功能连接标记物。首先,我们从全脑或功能网络连接中提取并总结了与 IQ 评分最相关的相关静息状态特征。随后,这些特征被用于建立针对表现和言语 IQ 评分的预测模型。在 10 倍交叉验证框架内,我们的发现表明,基于全脑功能连接的预测模型有效预测了表现性 IQ 评分( ),但不能预测言语性 IQ 评分( )。基于脑功能网络连接的预测模型的结果进一步证明了默认模式网络 (DMN) 和额顶任务控制网络 (FTPN) 对表现性 IQ 评分( )的卓越预测能力。使用独立数据集也验证了上述发现。我们的研究结果表明,儿童和青少年的表现性 IQ 主要依赖于与 DMN 和 FTPN 相关的大脑区域的连接。此外,儿童和青少年时期智力表现的变化与大脑功能网络连接的变化密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验