Suppr超能文献

Thermodynamics of chaotic relaxation processes.

作者信息

Lippolis Domenico

机构信息

School of Mathematical Sciences, <a href="https://ror.org/03jc41j30">Jiangsu University</a>, Zhenjiang 212013, China.

出版信息

Phys Rev E. 2024 Aug;110(2-1):024215. doi: 10.1103/PhysRevE.110.024215.

Abstract

The established thermodynamic formalism of chaotic dynamics, valid at statistical equilibrium, is here generalized to systems out of equilibrium that have yet to relax to a steady state. A relation between information, escape rate, and the phase-space average of an integrated observable (e.g., Lyapunov exponent, diffusion coefficient) is obtained for finite time. Most notably, the thermodynamic treatment may predict the phase-space profile of any integrated observable for finite time, from the leading and subleading eigenfunctions of the Perron-Frobenius or Koopman transfer operator. Examples of that equivalence are shown, and the theory is tested analytically on the Bernoulli map while numerically on the perturbed cat map, the Hénon map, and the Ikeda map, all paradigms of chaos.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验