Suppr超能文献

超稳定玻璃的振动寿命和粘弹性特性

Vibrational lifetimes and viscoelastic properties of ultrastable glasses.

作者信息

Grießer Jan, Pastewka Lars

机构信息

Department of Microsystems Engineering, <a href="https://ror.org/0245cg223">University of Freiburg</a>, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.

Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, <a href="https://ror.org/0245cg223">University of Freiburg</a>, 79110 Freiburg, Germany.

出版信息

Phys Rev E. 2024 Aug;110(2-2):025001. doi: 10.1103/PhysRevE.110.025001.

Abstract

Amorphous solids are viscoelastic. They dissipate energy when deformed at finite rate and finite temperature. We here use analytic theory and molecular simulations to demonstrate that linear viscoelastic dissipation can be directly related to the static and dynamic properties of the fundamental vibrational excitations of an amorphous system. We study ultrastable glasses that do not age, i.e., that remain in stable minima of the potential energy surface at finite temperature. Our simulations show four types of vibrational modes, which differ in spatial localization, similarity to plane waves and vibrational lifetimes. At frequencies below the Boson peak, the viscoelastic response can be split into contributions from plane-wave and quasilocalized modes. We derive a parameter-free expression for the viscoelastic storage and loss moduli for both of these modes. Our results show that the dynamics of microscopic dissipation, in particular the lifetimes of the modes, determine the viscoelastic response only at high frequency. Quasilocalized modes dominate the linear viscoelastic response at intermediate frequencies below the Boson peak.

摘要

非晶态固体具有粘弹性。它们在有限速率和有限温度下变形时会耗散能量。我们在此使用解析理论和分子模拟来证明,线性粘弹性耗散可以直接与非晶态系统基本振动激发的静态和动态特性相关联。我们研究了不会老化的超稳定玻璃,即在有限温度下保持在势能面稳定极小值处的玻璃。我们的模拟显示了四种类型的振动模式,它们在空间局域性、与平面波的相似性以及振动寿命方面存在差异。在低于玻色子峰的频率下,粘弹性响应可以分为平面波模式和准局域模式的贡献。我们为这两种模式的粘弹性储能模量和损耗模量推导了一个无参数表达式。我们的结果表明,微观耗散的动力学,特别是模式的寿命,仅在高频下决定粘弹性响应。在低于玻色子峰的中频下,准局域模式主导线性粘弹性响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验