Suppr超能文献

受挫随机游走:一种计算超图上节点距离的快速方法。

Frustrated random walks: A fast method to compute node distances on hypergraphs.

作者信息

Li Enzhi, Nickleach Scott, Fadlallah Bilal

机构信息

<a href="https://ror.org/04mv4n011">Amazon</a>, San Diego, California 92122, USA.

<a href="https://ror.org/04mv4n011">Amazon</a>, Seattle, Washington 98109, USA.

出版信息

Phys Rev E. 2024 Aug;110(2-1):024314. doi: 10.1103/PhysRevE.110.024314.

Abstract

A hypergraph is a generalization of a graph that arises naturally when attribute-sharing among entities is considered. Compared to graphs, hypergraphs have the distinct advantage that they contain explicit communities and are more convenient to manipulate. An open problem in hypergraph research is how to accurately and efficiently calculate node distances on hypergraphs. Estimating node distances enables us to find a node's nearest neighbors, which has important applications in such areas as recommender system, targeted advertising, etc. In this paper, we propose using expected hitting times of random walks to compute hypergraph node distances. We note that simple random walks cannot accurately compute node distances on highly complex real-world hypergraphs, which motivates us to introduce frustrated random walks (FRW) for this task. We further benchmark our method against DeepWalk, and show that while the latter can achieve comparable results, FRW has a distinct computational advantage in cases where the number of targets is fairly small. For such cases, we show that FRW runs in significantly shorter time than DeepWalk. Finally, we analyze the time complexity of our method, and show that for large and sparse hypergraphs, the complexity is approximately linear, rendering it superior to the DeepWalk alternative.

摘要

超图是一种图的泛化形式,当考虑实体之间的属性共享时自然产生。与图相比,超图具有明显的优势,即它们包含明确的社区且更便于操作。超图研究中的一个开放问题是如何准确且高效地计算超图上的节点距离。估计节点距离能使我们找到一个节点的最近邻,这在推荐系统、定向广告等领域有重要应用。在本文中,我们提出使用随机游走的期望击中时间来计算超图节点距离。我们注意到简单随机游走无法在高度复杂的真实世界超图上准确计算节点距离,这促使我们引入受挫随机游走(FRW)来完成此任务。我们进一步将我们的方法与DeepWalk进行基准测试,并表明尽管后者能取得可比的结果,但在目标数量相当少的情况下,FRW具有明显的计算优势。对于此类情况,我们表明FRW的运行时间比DeepWalk短得多。最后,我们分析了我们方法的时间复杂度,并表明对于大型稀疏超图,复杂度近似为线性,使其优于DeepWalk方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验