Aiache Y, Seida C, El Anouz K, El Allati A
Laboratory of R&D in Engineering Sciences, Faculty of Sciences and Techniques Al-Hoceima, <a href="https://ror.org/03c4shz64">Abdelmalek Essaadi University</a>, BP 34, Ajdir 32003, Tetouan, Morocco.
ESMaR, Faculty of Sciences, <a href="https://ror.org/00r8w8f84">Mohammed V University</a> in Rabat, B.P. 1014 Rabat, Morocco.
Phys Rev E. 2024 Aug;110(2-1):024132. doi: 10.1103/PhysRevE.110.024132.
Accurate measurement at low temperatures is essential for both gaining a fundamental understanding of physical processes and developing technological applications. In this paper, we propose a theoretical framework for quantum temperature sensing in a composite environment with non-Markovian dynamics. Our suggested system uses a single qubit as a temperature sensor to test its sensitivity in calculating the temperature of a composite environment. We show that the temperature sensor's sensitivity can saturate the quantum Cramér-Rao bound by measuring the σ[over ̂]_{z} observable of the probe qubit. Temperature sensing performance is measured using the quantum signal-to-noise ratio. We underline how non-Markovianity can enhance the performance of our thermometers. Furthermore, we emphasize that nonequilibrium conditions do not always result in the best sensitivities in temperature estimation.
在低温下进行精确测量对于深入理解物理过程和开发技术应用都至关重要。在本文中,我们提出了一个用于具有非马尔可夫动力学的复合环境中量子温度传感的理论框架。我们建议的系统使用单个量子比特作为温度传感器,以测试其在计算复合环境温度时的灵敏度。我们表明,通过测量探测量子比特的可观测量σ̂ₓ,温度传感器的灵敏度可以达到量子克拉美-罗界。使用量子信噪比来测量温度传感性能。我们强调了非马尔可夫性如何能够提高我们温度计的性能。此外,我们强调非平衡条件并不总是能在温度估计中带来最佳灵敏度。