Suppr超能文献

通过局部光遗传学照射解开并消除螺旋波和湍流。

Unpinning and elimination of spiral waves and turbulence through local optogenetical illumination.

机构信息

School of Mathematics, <a href="https://ror.org/01xt2dr21">China University of Mining and Technology</a>, Xuzhou, Jiangsu 221116, China.

School of Physics, <a href="https://ror.org/014v1mr15">Hangzhou Normal University</a>, Hangzhou 311121, China.

出版信息

Phys Rev E. 2024 Aug;110(2-1):024218. doi: 10.1103/PhysRevE.110.024218.

Abstract

Spiral waves in cardiac tissue have been identified as a significant factor leading to life-threatening arrhythmias and ventricular fibrillation. Consequently, understanding the mechanisms underlying the dynamics of such waves and exploring strategies for their elimination have garnered substantial interest and emerged as crucial research objectives. Spiral waves often become pinned (trapped) at anatomical obstacles in cardiac tissue, resulting in increased stability and posing challenges for their elimination. The unpinning of spiral waves can be achieved through the application of an external electric field and has been the subject of previous research. Recently, optogenetics has emerged as an alternative method to modulate electrical activity by illumination of cardiac tissue. In this paper, we employ mathematical modeling to investigate the potential of utilizing local illumination to unpin and eliminate spiral waves in cardiac tissue. We also extend this methodology to explore the effects of more complex turbulent excitation patterns. We conduct simulations using low-dimensional (Barkley) and ionic (Fenton-Karma) models of cardiac tissue, incorporating optogenetical channels. Our findings demonstrate that local suprathreshold illumination can successfully unpin spiral waves in 100% of cases. Notably, unlike unpinning by electrical field stimulation, this approach does not necessitate precise timing of stimulus application during a specific phase of rotation. Additionally, we demonstrate that periodic optogenetical stimulation can effectively eliminate both unpinned spiral waves and turbulence by moving them toward the boundary via an antitachycardia pacing mechanism.

摘要

心脏组织中的螺旋波已被确定为导致危及生命的心律失常和心室颤动的重要因素。因此,了解此类波的动力学背后的机制,并探索消除它们的策略,引起了广泛的关注,并成为关键的研究目标。螺旋波经常在心脏组织的解剖障碍物处被固定(困住),从而增加了稳定性,使其难以消除。通过施加外部电场,可以实现螺旋波的解固定,这是之前研究的主题。最近,光遗传学已成为一种替代方法,可以通过心脏组织的照明来调节电活动。在本文中,我们使用数学模型研究利用局部照明来解固定和消除心脏组织中螺旋波的潜力。我们还扩展了这种方法来探索更复杂的湍流激发模式的影响。我们使用低维(Barkley)和离子(Fenton-Karma)心脏组织模型进行模拟,结合了光遗传学通道。我们的研究结果表明,局部超阈值照明可以成功地将 100%的螺旋波解固定。值得注意的是,与电场刺激解固定不同,这种方法不需要在旋转的特定相位精确地定时刺激应用。此外,我们证明周期性的光遗传学刺激可以通过抗心动过速起搏机制将未固定的螺旋波和湍流移动到边界,从而有效地消除它们。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验