Contreras-Vergara O, Valencia-Ortega G, Sánchez-Salas N, Jiménez-Aquino J I
Departamento de Física, Escuela Superior de Física y Matemáticas, <a href="https://ror.org/059sp8j34">Instituto Politécnico Nacional</a>, Edificio 9 UP Zacatenco, C.P. 07738 Ciudad de México, Mexico.
División de Matemáticas e Ingeniería, Facultad de Estudios Superiores Acatlán, <a href="https://ror.org/01tmp8f25">Universidad Nacional Autónoma de México</a>, 53150 Estado de México, Mexico.
Phys Rev E. 2024 Aug;110(2-1):024123. doi: 10.1103/PhysRevE.110.024123.
This paper focuses on the coefficient of performance (COP) at maximum χ^{R} figure of merit for a Brownian Carnot-like refrigerator, within the context of the low-dissipation approach. Our proposal is based on the Langevin equation for a Brownian particle bounded to a harmonic potential trap, which can perform Carnot-like cycles at finite time. The theoretical approach is related to the equilibrium ensemble average of 〈x^{2}〉_{eq} which plays the role of a statelike equation, x being the Brownian particle position. This statelike equation comes from the macroscopic version of the corresponding Langevin equation for a Brownian particle. We show that under quasistatic conditions the COP has the same expression as the macroscopic Carnot refrigerator, while for irreversible cycles at finite time and under symmetric dissipation the optimal COP is the counterpart of Curzon-Ahlborn efficiency as also obtained for irreversible macroscopic refrigerators.
本文聚焦于低耗散方法框架下,类布朗卡诺制冷机在最大品质因数χ^{R}时的性能系数(COP)。我们的提议基于一个受限于谐振势阱的布朗粒子的朗之万方程,该粒子能在有限时间内执行类卡诺循环。理论方法与〈x^{2}〉{eq}的平衡系综平均有关,〈x^{2}〉{eq}起着状态方程的作用,x为布朗粒子的位置。这个状态方程源自布朗粒子相应朗之万方程的宏观版本。我们表明,在准静态条件下,COP具有与宏观卡诺制冷机相同的表达式,而对于有限时间的不可逆循环以及对称耗散情况,最优COP是与不可逆宏观制冷机所得到的库尔宗 - 阿尔伯恩效率相对应的。