Contreras-Vergara O, Sánchez-Salas N, Valencia-Ortega G, Jiménez-Aquino J I
Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 UP Zacatenco, CP 07738, CDMX, México.
División de Matemáticas e Ingeniería, Facultad de Estudios Superiores Acatlán, Universidad Nacional Autónoma de México, Av. Alcanfores y San Juan Totoltepec, Santa Cruz Acatlán, Naucalpan de Juárez, 53150, Estado de México, México.
Phys Rev E. 2023 Jul;108(1-1):014123. doi: 10.1103/PhysRevE.108.014123.
This work uses the low-dissipation strategy to obtain efficiency at maximum power from a stochastic heat engine performing Carnot-, Stirling- and Ericsson-like cycles at finite time. The heat engine consists of a colloidal particle trapped by optical tweezers, in contact with two thermal baths at different temperatures, namely hot (T_{h}) and cold (T_{c}). The particle dynamics is characterized by a Langevin equation with time-dependent control parameters bounded to a harmonic potential trap. In a low-dissipation approach, the equilibrium properties of the system are required, which in our case, can be calculated through a statelike equation for the mean value 〈x^{2}〉_{eq} coming from a macroscopic expression associated with the Langevin equation.
这项工作采用低耗散策略,以在有限时间内从执行类卡诺循环、类斯特林循环和类爱立信循环的随机热机中获得最大功率下的效率。该热机由被光镊捕获的胶体粒子组成,与两个不同温度的热库接触,即热库((T_{h}))和冷库((T_{c}))。粒子动力学由一个朗之万方程表征,其时间相关控制参数受限于一个简谐势阱。在低耗散方法中,需要系统的平衡性质,在我们的情况下,可以通过与朗之万方程相关的宏观表达式得出的关于平均值〈(x^{2})〉(_{eq})的状态方程来计算。