Suppr超能文献

工程化去核间充质干细胞调节免疫微环境并促进伤口愈合。

Engineered Enucleated Mesenchymal Stem Cells Regulating Immune Microenvironment and Promoting Wound Healing.

机构信息

Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China.

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.

出版信息

Adv Mater. 2024 Nov;36(45):e2412253. doi: 10.1002/adma.202412253. Epub 2024 Sep 19.

Abstract

Persistent excessive inflammation caused by neutrophil and macrophage dysfunction in the wound bed leads to refractory response during wound healing. However, previous studies using cytokines or drugs often suffer from short half-lives and limited targeting, resulting in unsatisfactory therapeutic effects. Herein, the enucleated mesenchymal stem cell is engineered by aptamer bioorthogonal chemistry to modify the cell membrane and mRNA loading in the cell cytoplasm as a novel delivery vector (Cargocyte) with accurate targeting and sustained cytokine secretion. Cargocytes can successfully reduce NETosis by targeting the nuclear chromatin protein DEK protein with aptamers and sustaining interleukin (IL)-4 expression to overcome the challenges associated with the high cost and short half-life of IL-4 protein and significantly prevent the transition of macrophages into the M1 phenotype. Therapeutic effects have been demonstrated in murine and porcine wound models and have powerful potential to improve wound immune microenvironments effectively. Overall, the use of engineered enucleated mesenchymal stem cells as a delivery system may be a promising approach for wound healing.

摘要

持续的过度炎症是由伤口床中中性粒细胞和巨噬细胞功能障碍引起的,导致伤口愈合过程中的难治性反应。然而,以前使用细胞因子或药物的研究往往存在半衰期短和靶向性有限的问题,导致治疗效果不理想。在此,通过适体生物正交化学工程去核间充质干细胞来修饰细胞膜和细胞质中的 mRNA 负载,作为一种具有精确靶向和持续细胞因子分泌的新型递送载体(Cargocyte)。Cargocyte 可以通过与适体结合靶向核染色质蛋白 DEK 蛋白来成功减少 NETosis,并维持白细胞介素 (IL)-4 的表达,从而克服 IL-4 蛋白成本高和半衰期短的挑战,并显著防止巨噬细胞向 M1 表型的转化。在小鼠和猪的伤口模型中已经证明了治疗效果,具有有效改善伤口免疫微环境的强大潜力。总之,使用工程化去核间充质干细胞作为递送系统可能是一种有前途的伤口愈合方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验