Suppr超能文献

基于明胶的微 ribbons 水凝胶中过表达白细胞介素-4 的间充质干细胞增强了小鼠长骨临界尺寸缺损模型中的骨愈合。

Interleukin-4 overexpressing mesenchymal stem cells within gelatin-based microribbon hydrogels enhance bone healing in a murine long bone critical-size defect model.

机构信息

Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.

Stem Cell Biology and Regenerative Medicine Program, Stanford University, Stanford, California, USA.

出版信息

J Biomed Mater Res A. 2020 Nov 1;108(11):2240-2250. doi: 10.1002/jbm.a.36982. Epub 2020 May 14.

Abstract

Mesenchymal stem cell (MSC)-based therapy is a promising strategy for bone repair. Furthermore, the innate immune system, and specifically macrophages, plays a crucial role in the differentiation and activation of MSCs. The anti-inflammatory cytokine Interleukin-4 (IL-4) converts pro-inflammatory M1 macrophages into a tissue regenerative M2 phenotype, which enhances MSC differentiation and function. We developed lentivirus-transduced IL-4 overexpressing MSCs (IL-4 MSCs) that continuously produce IL-4 and polarize macrophages toward an M2 phenotype. In the current study, we investigated the potential of IL-4 MSCs delivered using a macroporous gelatin-based microribbon (μRB) scaffold for healing of critical-size long bone defects in Mice. IL-4 MSCs within μRBs enhanced M2 marker expression without inhibiting M1 marker expression in the early phase, and increased macrophage migration into the scaffold. Six weeks after establishing the bone defect, IL-4 MSCs within μRBs enhanced bone formation and helped bridge the long bone defect. IL-4 MSCs delivered using macroporous μRB scaffold is potentially a valuable strategy for the treatment of critical-size long bone defects.

摘要

基于间充质干细胞(MSC)的治疗是骨修复的一种有前途的策略。此外,先天免疫系统,特别是巨噬细胞,在 MSC 的分化和激活中起着至关重要的作用。抗炎细胞因子白细胞介素-4(IL-4)将促炎 M1 巨噬细胞转化为组织再生 M2 表型,从而增强 MSC 的分化和功能。我们开发了转染慢病毒的过表达 IL-4 的 MSC(IL-4 MSC),其持续产生 IL-4,并将巨噬细胞向 M2 表型极化。在本研究中,我们研究了使用基于大孔明胶的微带(μRB)支架递送至 IL-4 MSC 的潜力,用于治疗小鼠的临界尺寸长骨缺损。μRB 内的 IL-4 MSC 在早期阶段增强了 M2 标志物的表达,而不抑制 M1 标志物的表达,并增加了巨噬细胞向支架内的迁移。在建立骨缺损 6 周后,μRB 内的 IL-4 MSC 增强了骨形成,并有助于桥接长骨缺损。使用大孔 μRB 支架递送至 IL-4 MSC 可能是治疗临界尺寸长骨缺损的一种有价值的策略。

相似文献

2
Injectable and in situ crosslinkable gelatin microribbon hydrogels for stem cell delivery and bone regeneration .
Theranostics. 2020 May 15;10(13):6035-6047. doi: 10.7150/thno.41096. eCollection 2020.
3
Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness.
ACS Biomater Sci Eng. 2020 Jun 8;6(6):3454-3463. doi: 10.1021/acsbiomaterials.9b01792. Epub 2020 May 27.
5
Sex Differences in Mesenchymal Stem Cell Therapy With Gelatin-Based Microribbon Hydrogels in a Murine Long Bone Critical-Size Defect Model.
Front Bioeng Biotechnol. 2021 Oct 19;9:755964. doi: 10.3389/fbioe.2021.755964. eCollection 2021.
7
Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions.
Tissue Eng Part A. 2018 Nov;24(21-22):1631-1640. doi: 10.1089/ten.TEA.2018.0011.
8
Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
J Biomed Mater Res A. 2017 Nov;105(11):2957-2967. doi: 10.1002/jbm.a.36148. Epub 2017 Jul 14.
10
Spatially patterned microribbon-based hydrogels induce zonally-organized cartilage regeneration by stem cells in 3D.
Acta Biomater. 2020 Jan 1;101:196-205. doi: 10.1016/j.actbio.2019.10.025. Epub 2019 Oct 19.

引用本文的文献

2
Engineering strategies to enhance the research progress of mesenchymal stem cells in wound healing.
Stem Cell Res Ther. 2025 Jul 1;16(1):342. doi: 10.1186/s13287-025-04471-7.
3
Overexpression of interleukin-4 using adeno-associated virus is a potential strategy to enhance bone regeneration.
JBMR Plus. 2025 Apr 24;9(6):ziaf060. doi: 10.1093/jbmrpl/ziaf060. eCollection 2025 Jun.
4
Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation.
Mater Today Bio. 2024 Dec 16;30:101410. doi: 10.1016/j.mtbio.2024.101410. eCollection 2025 Feb.
5
Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds.
Front Bioeng Biotechnol. 2024 Oct 21;12:1421674. doi: 10.3389/fbioe.2024.1421674. eCollection 2024.
6
Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration.
Regen Ther. 2023 Sep 20;24:459-471. doi: 10.1016/j.reth.2023.09.007. eCollection 2023 Dec.
8
Resistin targets TAZ to promote osteogenic differentiation through PI3K/AKT/mTOR pathway.
iScience. 2023 Jun 7;26(7):107025. doi: 10.1016/j.isci.2023.107025. eCollection 2023 Jul 21.
9
Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy.
Inflamm Regen. 2023 May 25;43(1):29. doi: 10.1186/s41232-023-00279-1.
10
Fabrication of Interleukin-4 Encapsulated Bioactive Microdroplets for Regulating Inflammation and Promoting Osteogenesis.
Int J Nanomedicine. 2023 Apr 19;18:2019-2035. doi: 10.2147/IJN.S397359. eCollection 2023.

本文引用的文献

2
Calvarial Versus Long Bone: Implications for Tailoring Skeletal Tissue Engineering.
Tissue Eng Part B Rev. 2020 Feb;26(1):46-63. doi: 10.1089/ten.TEB.2018.0353. Epub 2019 Dec 18.
3
IL-6 counteracts the inhibitory effect of IL-4 on osteogenic differentiation of human adipose stem cells.
J Cell Physiol. 2019 Nov;234(11):20520-20532. doi: 10.1002/jcp.28652. Epub 2019 Apr 23.
4
Mesenchymal Stem Cell Therapy for Bone Regeneration.
Clin Orthop Surg. 2018 Sep;10(3):271-278. doi: 10.4055/cios.2018.10.3.271. Epub 2018 Aug 22.
5
Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects.
Front Bioeng Biotechnol. 2018 Jul 31;6:105. doi: 10.3389/fbioe.2018.00105. eCollection 2018.
6
Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions.
Tissue Eng Part A. 2018 Nov;24(21-22):1631-1640. doi: 10.1089/ten.TEA.2018.0011.
7
Mesenchymal stem cell-macrophage crosstalk and bone healing.
Biomaterials. 2019 Mar;196:80-89. doi: 10.1016/j.biomaterials.2017.12.025. Epub 2018 Jan 2.
8
Inflammation, ageing, and bone regeneration.
J Orthop Translat. 2017 Jul;10:28-35. doi: 10.1016/j.jot.2017.04.002. Epub 2017 May 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验