Suppr超能文献

利用代谢工程化的耻垢分枝杆菌在微乳液体系中高效生物转化植物甾醇为双降醇。

High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system.

机构信息

National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China.

Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.

出版信息

Biotechnol J. 2024 Sep;19(9):e2400387. doi: 10.1002/biot.202400387.

Abstract

21-Hydroxy-20-methylpregn-4-en-3-one (4-HBC, bisnoralcohol) is a crucial intermediate for the synthesis of steroidal drugs. Significant challenges including by-products formation and poor substrate solubility were still confronted in its main synthetic route by microbial conversion from phytosterol. Construction of a direct bioconversion pathway to 4-HBC and an efficient substrate emulsion system is therefore urgently required. In this study, three novel isoenzymes of 3-ketosteroid-Δ-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KsH) in Mycobacterium neoaurum were excavated and identified as KstD4, KstD5, and KsHA3. A strain capable of fully directing the synthesis of 4-HBC was metabolically engineered via serial genetic deletion combined with enhanced expression of cholesterol oxidase (ChOx2) and enoyl-CoA hydratase (EchA19). Moreover, a micro-emulsion system combined with soybean oil and hydroxypropyl-β-cyclodextrin improved substrate solubility and bioavailability. In batch fermentation, molar yield of 96.7% with 39.5 g L 4-HBC was obtained from 50 g L phytosterol. Our findings demonstrate the potential for industrial-scale biosynthesis of 4-HBC.

摘要

21-羟-20-甲基孕-4-烯-3-酮(4-HBC,双降醇)是合成甾体药物的关键中间体。在植物甾醇微生物转化的主要合成路线中,仍然面临着副产物形成和底物溶解度差等重大挑战。因此,迫切需要构建一条直接生物转化为 4-HBC 的途径和一种有效的底物乳液系统。在本研究中,从新金分枝杆菌中挖掘并鉴定了三种新型的 3-酮甾体-Δ-脱氢酶(KstD)和 3-酮甾体 9α-羟化酶(KsH)同工酶,分别为 KstD4、KstD5 和 KsHA3。通过串联基因缺失与胆固醇氧化酶(ChOx2)和烯酰辅酶 A 水合酶(EchA19)的增强表达,对能够完全指导 4-HBC 合成的菌株进行了代谢工程改造。此外,将大豆油和羟丙基-β-环糊精的微乳液系统结合使用,提高了底物的溶解度和生物利用度。在分批发酵中,从 50 g/L 植物甾醇中获得了 96.7%摩尔收率的 39.5 g/L 4-HBC。我们的研究结果表明,4-HBC 的工业规模生物合成具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验