Suppr超能文献

具有残留植物甾醇降解途径的雄烯二酮产生分枝杆菌菌株的全基因组和酶分析。

Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways.

机构信息

Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.

Wuhan Amersino Biodevelop Inc., B1-Building, Biolake Park, Wuhan, 430075, Hubei, China.

出版信息

Microb Cell Fact. 2020 Oct 2;19(1):187. doi: 10.1186/s12934-020-01442-w.

Abstract

Mycobacterium neoaurum strains can transform phytosterols to 4-androstene-3,17-dione (4-AD), a key intermediate for the synthesis of advanced steroidal medicines. In this work, we presented the complete genome sequence of the M. neoaurum strain HGMS2, which transforms β-sitosterol to 4-AD. Through genome annotation, a phytosterol-degrading pathway in HGMS2 was predicted and further shown to form a 9,10-secosteroid intermediate by five groups of enzymes. These five groups of enzymes included three cholesterol oxidases (ChoM; group 1: ChoM1, ChoM2 and Hsd), two monooxygenases (Mon; group 2: Mon164 and Mon197), a set of enzymes for side-chain degradation (group 3), one 3-ketosteroid-1,2-dehydrogenase (KstD; group 4: KstD211) and three 3-ketosteroid-9a-hydroxylases (Ksh; group 5: KshA226, KshA395 and KshB122). A gene cluster encoding Mon164, KstD211, KshA226, KshB122 and fatty acid β-oxidoreductases constituted one integrated metabolic pathway, while genes encoding other key enzymes were sporadically distributed. All key enzymes except those from group 3 were prepared as recombinant proteins and their activities were evaluated, and the proteins exhibited distinct activities compared with enzymes identified from other bacterial species. Importantly, we found that the KstD211 and KshA395 enzymes in the HGMS2 strain retained weak activities and caused the occurrence of two major impurities, i.e., 1,4-androstene-3,17-dione (ADD) and 9-hydroxyl-4-androstene-3,17-dione (9OH-AD) during β-sitosterol fermentation. The concurrence of these two 4-AD analogs not only lowered 4-AD production yield but also hampered 4-AD purification. HGMS2 has the least number of genes encoding KstD and Ksh enzymes compared with current industrial strains. Therefore, HGMS2 could be a potent strain by which the 4-AD production yield could be enhanced by disabling the KstD211 and KshA395 enzymes. Our work also provides new insight into the engineering of the HGMS2 strain to produce ADD and 9OH-AD for industrial application.

摘要

新型金色分枝杆菌能够将植物甾醇转化为 4-雄烯二酮(4-AD),这是合成高级甾体药物的关键中间体。在这项工作中,我们介绍了新型金色分枝杆菌 HGMS2 菌株的全基因组序列,该菌株可以将β-谷甾醇转化为 4-AD。通过基因组注释,预测了 HGMS2 中存在一条植物甾醇降解途径,并进一步表明该途径通过五组酶形成 9,10-甾体中间产物。这五组酶包括三种胆固醇氧化酶(ChoM;第 1 组:ChoM1、ChoM2 和 Hsd)、两种单加氧酶(Mon;第 2 组:Mon164 和 Mon197)、一组侧链降解酶(第 3 组)、一种 3-酮固醇-1,2-脱氢酶(KstD;第 4 组:KstD211)和三种 3-酮固醇-9a-羟化酶(Ksh;第 5 组:KshA226、KshA395 和 KshB122)。编码 Mon164、KstD211、KshA226、KshB122 和脂肪酸β-氧化还原酶的基因簇构成了一个整合的代谢途径,而编码其他关键酶的基因则呈散在分布。除第 3 组外的所有关键酶均被制备为重组蛋白并评估了其活性,这些蛋白与从其他细菌物种中鉴定出的酶相比表现出明显的活性。重要的是,我们发现 HGMS2 菌株中的 KstD211 和 KshA395 酶保留了较弱的活性,并导致在β-谷甾醇发酵过程中出现两种主要杂质,即 1,4-雄烯二酮(ADD)和 9-羟基-4-雄烯二酮(9OH-AD)。这两种 4-AD 类似物的共存不仅降低了 4-AD 的产率,而且还阻碍了 4-AD 的纯化。与当前的工业菌株相比,HGMS2 编码 KstD 和 Ksh 酶的基因数量最少。因此,通过使 KstD211 和 KshA395 失活,HGMS2 可以成为一种有效的菌株,从而提高 4-AD 的产率。我们的工作还为 HGMS2 菌株的工程改造提供了新的见解,以用于工业生产 ADD 和 9OH-AD。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4450/7532642/9d00c99ee1cc/12934_2020_1442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验