Suppr超能文献

一种使用音乐特征和解释映射对表演者逐搏心跳间期进行建模的框架。

A framework for modeling performers' beat-to-beat heart intervals using music features and Interpretation Maps.

作者信息

Soliński Mateusz, Reed Courtney N, Chew Elaine

机构信息

School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.

Engineering Department, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom.

出版信息

Front Psychol. 2024 Sep 4;15:1403599. doi: 10.3389/fpsyg.2024.1403599. eCollection 2024.

Abstract

OBJECTIVE

Music strongly modulates our autonomic nervous system. This modulation is evident in musicians' beat-to-beat heart (RR) intervals, a marker of heart rate variability (HRV), and can be related to music features and structures. We present a novel approach to modeling musicians' RR interval variations, analyzing detailed components within a music piece to extract continuous music features and annotations of musicians' performance decisions.

METHODS

A professional ensemble (violinist, cellist, and pianist) performs Schubert's Trio No. 2, Op. 100, Andante con moto nine times during rehearsals. RR interval series are collected from each musician using wireless ECG sensors. Linear mixed models are used to predict their RR intervals based on music features (tempo, loudness, note density), interpretive choices (Interpretation Map), and a starting factor.

RESULTS

The models explain approximately half of the variability of the RR interval series for all musicians, with R-squared = 0.606 (violinist), 0.494 (cellist), and 0.540 (pianist). The features with the strongest predictive values were loudness, climax, moment of concern, and starting factor.

CONCLUSIONS

The method revealed the relative effects of different music features on autonomic response. For the first time, we show a strong link between an interpretation map and RR interval changes. Modeling autonomic response to music stimuli is important for developing medical and non-medical interventions. Our models can serve as a framework for estimating performers' physiological reactions using only music information that could also apply to listeners.

摘要

目的

音乐对我们的自主神经系统有强烈的调节作用。这种调节在音乐家逐拍的心率(RR)间期(心率变异性(HRV)的一个指标)中很明显,并且可能与音乐特征和结构有关。我们提出了一种模拟音乐家RR间期变化的新方法,分析音乐作品中的详细成分,以提取连续的音乐特征和音乐家演奏决策的注释。

方法

一个专业乐团(小提琴手、大提琴手和钢琴家)在排练期间九次演奏舒伯特的《第二钢琴三重奏》,作品100号,行板。使用无线心电图传感器从每位音乐家那里收集RR间期序列。线性混合模型用于根据音乐特征(节奏、响度、音符密度)、诠释选择(诠释图)和一个起始因素来预测他们的RR间期。

结果

这些模型解释了所有音乐家RR间期序列约一半的变异性,决定系数R² = 0.606(小提琴手)、0.494(大提琴手)和0.540(钢琴家)。预测值最强的特征是响度、高潮、关注点和起始因素。

结论

该方法揭示了不同音乐特征对自主反应的相对影响。我们首次展示了诠释图与RR间期变化之间的紧密联系。对音乐刺激的自主反应进行建模对于开发医学和非医学干预措施很重要。我们的模型可以作为一个框架,仅使用音乐信息来估计表演者的生理反应,这也可能适用于听众。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c84/11409844/0c01f1208bb4/fpsyg-15-1403599-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验