Zhang Hui, Zhang Weihua
Department of Management, Zhengzhou Business University, 451200, Zhengzhou, Henan, China.
School of Information and Mechanical and Electrical Engineering, Zhengzhou Business University, 451200, Zhengzhou, Henan, China.
Heliyon. 2024 Sep 4;10(17):e37229. doi: 10.1016/j.heliyon.2024.e37229. eCollection 2024 Sep 15.
Customer Relationship Management (CRM) is vital in modern business, aiding in the management and analysis of customer interactions. However, existing methods struggle to capture the dynamic and complex nature of customer relationships, as traditional approaches fail to leverage time series data effectively. To address this, we propose a novel GWO-attention-ConvLSTM model, which offers more effective prediction of customer churn and analysis of customer satisfaction. This model utilizes an attention mechanism to focus on key information and integrates a ConvLSTM layer to capture spatiotemporal features, effectively modeling complex temporal patterns in customer data. We validate our proposed model on multiple real-world datasets, including the BigML Telco Churn dataset, IBM Telco dataset, Cell2Cell dataset, and Orange Telecom dataset. Experimental results demonstrate significant performance improvements of our model compared to existing baseline models across these datasets. For instance, on the BigML Telco Churn dataset, our model achieves an accuracy of 95.17%, a recall of 93.66%, an F1 score of 92.89%, and an AUC of 95.00%. Similar results are validated on other datasets. In conclusion, our proposed GWO-attention-ConvLSTM model makes significant advancements in the CRM domain, providing powerful tools for predicting customer churn and analyzing customer satisfaction. By addressing the limitations of existing methods and leveraging the capabilities of deep learning, attention mechanisms, and optimization algorithms, our model paves the way for improving customer relationship management practices and driving business success.
客户关系管理(CRM)在现代商业中至关重要,有助于管理和分析客户互动。然而,现有方法难以捕捉客户关系的动态和复杂本质,因为传统方法未能有效利用时间序列数据。为解决这一问题,我们提出了一种新颖的灰狼优化算法-注意力机制-卷积长短期记忆网络(GWO-attention-ConvLSTM)模型,该模型能更有效地预测客户流失并分析客户满意度。此模型利用注意力机制聚焦关键信息,并集成卷积长短期记忆网络层以捕捉时空特征,从而有效地对客户数据中的复杂时间模式进行建模。我们在多个真实世界数据集上验证了所提出的模型,包括BigML电信客户流失数据集、IBM电信数据集、Cell2Cell数据集和Orange电信数据集。实验结果表明,与这些数据集上的现有基线模型相比,我们的模型具有显著的性能提升。例如,在BigML电信客户流失数据集上,我们的模型准确率达到95.17%,召回率为93.66%,F1分数为92.89%,曲线下面积(AUC)为95.00%。在其他数据集上也验证了类似结果。总之,我们提出的GWO-attention-ConvLSTM模型在CRM领域取得了重大进展,为预测客户流失和分析客户满意度提供了强大工具。通过克服现有方法的局限性并利用深度学习、注意力机制和优化算法的能力,我们的模型为改进客户关系管理实践和推动业务成功铺平了道路。