文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于电化学水分解的无粘结剂金属电极的制备——综述

Fabrication of binder-less metal electrodes for electrochemical water splitting - A review.

作者信息

Koshy Sandra Susan, Rath Jyotisman, Kiani Amirkianoosh

机构信息

Silicon Hall: Micro/Nano Manufacturing Facility, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada.

Department of Mechanical and Manufacturing Engineering, Ontario Tech University, Oshawa, ON, L1G 0C5, Canada.

出版信息

Heliyon. 2024 Sep 2;10(17):e37188. doi: 10.1016/j.heliyon.2024.e37188. eCollection 2024 Sep 15.


DOI:10.1016/j.heliyon.2024.e37188
PMID:39296055
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11409087/
Abstract

The escalating demand for green hydrogen (H) as a sustainable energy carrier has attracted intensive research into efficient water electrolysis methods. Promising candidates have emerged as binder-less metal electrodes, which enhance electrochemical performance and durability by reducing electron hindrance and avoiding binder degradation. Despite their potential, a comprehensive understanding of various binder-less fabrication techniques remains limited in the existing literature. As the main objective, this review paper aims to bridge this gap by providing an in-depth analysis of state-of-the-art fabrication methods for binder-less metal electrodes utilized in electrochemical water splitting. Recognizing the critical need for sustainable hydrogen production, the advantages of binder-less electrodes over conventional binder-based counterparts are elucidated, with emphasis placed on their role in promoting cost-effectiveness, improved stability, and enhanced catalytic activity. Techniques such as Hydrothermal/Solvothermal, Electrodeposition, Chemical/Vapor Deposition, and Laser-based fabrication are systematically examined, with their respective advantages, drawbacks, and comparison being highlighted. Drawing upon relevant examples from literature, insights on other aspects and recent trends are also provided, such as the performance of binder-less metal electrodes at industrial-scale current densities (0.1-1 A/cm) or their potential as photoactive catalysts. Additionally, future directions in the field of binder-less electrode fabrication and the exploration of innovative techniques are also discussed, ensuring that the trajectory of research aligns with the evolving demands of sustainable energy production. The "what's next" section highlights areas of further investigation and potential avenues for technological advancement.

摘要

对绿色氢(H₂)作为可持续能源载体的需求不断升级,引发了对高效水电解方法的深入研究。无粘结剂金属电极成为了有前景的候选者,它们通过减少电子阻碍和避免粘结剂降解来提高电化学性能和耐久性。尽管具有潜力,但现有文献对各种无粘结剂制造技术的全面理解仍然有限。作为主要目标,本综述论文旨在通过深入分析用于电化学水分解的无粘结剂金属电极的最新制造方法来弥合这一差距。认识到可持续制氢的迫切需求,阐明了无粘结剂电极相对于传统粘结剂基电极的优势,重点强调了它们在提高成本效益、改善稳定性和增强催化活性方面的作用。系统地研究了水热/溶剂热法、电沉积法、化学/气相沉积法和激光制造等技术,并突出了它们各自的优点、缺点及比较情况。借鉴文献中的相关实例,还提供了关于其他方面和最新趋势的见解,例如无粘结剂金属电极在工业规模电流密度(0.1 - 1 A/cm²)下的性能或它们作为光活性催化剂的潜力。此外,还讨论了无粘结剂电极制造领域的未来方向以及创新技术的探索,确保研究轨迹与可持续能源生产不断变化的需求相一致。“下一步”部分突出了进一步研究的领域和技术进步的潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/41b7fdcfe45c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/a86f19da81a4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/83de7f004313/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/bdfcfc22fd21/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/4b33a12a4cf1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/dbaca60f4d69/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/a0841c9c5e8e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/19a33af3fa40/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/92ece73399dc/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/d57d5bc40b11/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/41b7fdcfe45c/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/a86f19da81a4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/83de7f004313/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/bdfcfc22fd21/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/4b33a12a4cf1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/dbaca60f4d69/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/a0841c9c5e8e/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/19a33af3fa40/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/92ece73399dc/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/d57d5bc40b11/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/11409087/41b7fdcfe45c/gr10.jpg

相似文献

[1]
Fabrication of binder-less metal electrodes for electrochemical water splitting - A review.

Heliyon. 2024-9-2

[2]
Resent Development of Binder-Free Electrodes of Transition Metal Oxides and Nanohybrids for High Performance Supercapacitors - A Review.

Chem Rec. 2024-1

[3]
Integrated Catalyst-Substrate Electrodes for Electrochemical Water Splitting: A Review on Dimensional Engineering Strategy.

Small. 2025-7

[4]
Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting.

Chem Rec. 2023-2

[5]
Polyolefin-derived substrate-grown carbon nanotubes as binder-free electrode for hydrogen evolution in alkaline media.

Chemosphere. 2024-2

[6]
Superwetting Electrodes for Gas-Involving Electrocatalysis.

Acc Chem Res. 2018-7-17

[7]
Recent Advancements on Sustainable Electrochemical Water Splitting Hydrogen Energy Applications Based on Nanoscale Transition Metal Oxide (TMO) Substrates.

Chem Asian J. 2024-8-19

[8]
Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

Nanoscale. 2018-5-17

[9]
Metal-organic frameworks (MOFs) for hybrid water electrolysis: structure-property-performance correlation.

Chem Commun (Camb). 2024-7-30

[10]
Advantage of Dimethyl Sulfoxide in the Fabrication of Binder-Free Layered Double Hydroxides Electrodes: Impacts of Physical Parameters on the Crystalline Domain and Electrochemical Performance.

Int J Mol Sci. 2022-9-5

本文引用的文献

[1]
Self-Supported Mn-NiSe Electrocatalysts for Water and Urea Electrolysis for Energy-Saving Hydrogen Production.

ACS Appl Mater Interfaces. 2024-3-6

[2]
Protocol for fabricating pseudocapacitor electrodes using ultra-short laser pulses for in situ nanostructure generation.

STAR Protoc. 2023-9-15

[3]
Optimizing the Ultrashort Laser Pulses for In Situ Nanostructure Generation Technique for High-Performance Supercapacitor Electrodes Using Artificial Neural Networks and Simulated Annealing Algorithms.

ACS Omega. 2023-5-3

[4]
Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review.

Mater Horiz. 2023-7-31

[5]
Binder-free NiO/CuO hybrid structure via ULPING (Ultra-short Laser Pulse for In-situ Nanostructure Generation) technique for supercapacitor electrode.

Sci Rep. 2023-4-28

[6]
Unlocking pseudocapacitors prolonged electrode fabrication via ultra-short laser pulses and machine learning.

iScience. 2023-3-17

[7]
An inclusive review and perspective on Cu-based materials for electrochemical water splitting.

RSC Adv. 2023-2-13

[8]
Unraveling the Synergy of Anion Modulation on Co Electrocatalysts by Pulsed Laser for Water Splitting: Intermediate Capturing by In Situ/Operando Raman Studies.

Small. 2022-11

[9]
Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments.

Chem Soc Rev. 2022-6-6

[10]
Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media.

RSC Adv. 2019-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索