Suppr超能文献

二甲基亚砜在无粘结剂层状双氢氧化物电极制备中的优势:物理参数对结晶域和电化学性能的影响。

Advantage of Dimethyl Sulfoxide in the Fabrication of Binder-Free Layered Double Hydroxides Electrodes: Impacts of Physical Parameters on the Crystalline Domain and Electrochemical Performance.

机构信息

Department of Physics, College of Science Engineering and Technology, University of South Africa, Private Bag X6, Florida, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg 1710, South Africa.

出版信息

Int J Mol Sci. 2022 Sep 5;23(17):10192. doi: 10.3390/ijms231710192.

Abstract

The electrode fabrication stage is a crucial step in the design of supercapacitors. The latter involves the binder generally for adhesive purposes. The binder is electrochemically dormant and has weak interactions, leading to isolating the active material and conductive additive and then compromising the electrochemical performance. Designing binder-free electrodes is a practical way to improve the electrochemical performance of supercapacitors. However, most of the methods developed for the fabrication of binder-free LDH electrodes do not accommodate LDH materials prepared via the co-precipitation or ions exchange routes. Herein, we developed a novel method to fabricate binder-free LDH electrodes which accommodates LDH materials from other synthesis routes. The induced impacts of various physical parameters such as the temperature and time applied during the fabrication process on the crystalline domain and electrochemical performances of all the binder-free LDH electrodes were studied. The electrochemical analysis showed that the electrode prepared at 200 °C-1 h exhibited the best electrochemical performance compared to its counterparts. A specific capacitance of 3050.95 Fg at 10 mVs was achieved by it, while its Rct value was 0.68 Ω. Moreover, it retained 97% of capacitance after 5000 cycles at 120 mVs. The XRD and FTIR studies demonstrated that its excellent electrochemical performance was due to its crystalline domain which had held an important amount of water than other electrodes. The as-developed method proved to be reliable and advantageous due to its simplicity and cost-effectiveness.

摘要

电极制备阶段是超级电容器设计中的关键步骤。后者通常涉及用于粘合目的的粘合剂。粘合剂在电化学上是休眠的,相互作用较弱,导致活性材料和导电添加剂隔离,从而影响电化学性能。设计无粘合剂电极是提高超级电容器电化学性能的一种实用方法。然而,大多数用于制备无粘合剂 LDH 电极的方法都不适应通过共沉淀或离子交换路线制备的 LDH 材料。在这里,我们开发了一种制造无粘合剂 LDH 电极的新方法,该方法可容纳通过其他合成路线制备的 LDH 材料。研究了制造过程中施加的各种物理参数(例如温度和时间)对所有无粘合剂 LDH 电极的结晶域和电化学性能的诱导影响。电化学分析表明,与其他电极相比,在 200°C-1 h 下制备的电极表现出最佳的电化学性能。它在 10 mVs 下的比电容为 3050.95 Fg,而其 Rct 值为 0.68 Ω。此外,它在 120 mVs 下循环 5000 次后仍保留 97%的电容。XRD 和 FTIR 研究表明,其优异的电化学性能归因于其结晶域,该结晶域保留了比其他电极更多的水。由于其简单性和成本效益,所开发的方法被证明是可靠且有利的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6664/9456269/24cd52675ad1/ijms-23-10192-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验