Tripathi Gyanendra, Pandey Vinay Kumar, Ahmad Suhail, Khujamshukurov Nortoji A, Farooqui Alvina, Mishra Vishal
Department of Bioengineering, Integral University, Lucknow 226026, Uttar Pradesh, India.
Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India.
Curr Res Microb Sci. 2024 Sep 1;7:100272. doi: 10.1016/j.crmicr.2024.100272. eCollection 2024.
The present study aimed to isolate a bioflocculating fungal strain from wastewater collected from a local bike garage. The isolate showed maximum similarity to species The fungus was identified as species (accession no OP703382). The isolated fungus was evaluated in terms of biomass recovery efficiency in Sp. GTAF01. The extent of algal fungal co-pelletization was evaluated as a function of the algae-to-fungi ratio, volume of fungal culture in broth, agitation rate, and pH. results showed that at fungal culture volume of 60 %v/v, fungal culture volume of 1:3 %w/w, 100 rpm, and pH 3, 93.6 % biomass was obtained during the initial 5 h. At wavenumbers 1384 and 1024 cm a significant alteration in the transmission percentage was observed in co-pellet compared to algae and fungal cells. This shows the significant role of C-H-H and C-N stretches in co-pellet formation. This study provides deep insight into effective microalgal harvesting along with the simultaneous extraction of lipids that can be used for the sustainable production of biodiesel.
本研究旨在从当地自行车修理店收集的废水中分离出一种具有生物絮凝作用的真菌菌株。该分离菌株与 物种显示出最大的相似性。该真菌被鉴定为 物种(登录号OP703382)。对分离出的真菌在 Sp. GTAF01中的生物质回收效率方面进行了评估。藻类 - 真菌共造粒的程度根据藻类与真菌的比例、肉汤中真菌培养物的体积、搅拌速率和pH值进行评估。结果表明,在真菌培养物体积为60 %v/v、真菌培养物与藻类比例为1:3 %w/w、搅拌速率为100 rpm和pH值为3的条件下,在最初5小时内可获得93.6 %的生物质。在波数1384和1024 cm处,与藻类和真菌细胞相比,共造粒中的透射百分比出现了显著变化。这表明C - H - H和C - N伸缩振动在共造粒形成中起着重要作用。本研究为有效的微藻收获以及同时提取可用于可持续生产生物柴油的脂质提供了深入见解。