Opuni Kwabena F M, Ruß Manuela, Geens Rob, Vocht Line De, Wielendaele Pieter Van, Debuy Christophe, Sterckx Yann G-J, Glocker Michael O
Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health Science, University of Ghana, P.O. Box LG43, Legon, Ghana.
Proteome Center Rostock, University Medicine Rostock and University of Rostock, Schillingallee 69, 18057 Rostock, Germany.
Comput Struct Biotechnol J. 2024 Aug 28;23:3300-3314. doi: 10.1016/j.csbj.2024.08.023. eCollection 2024 Dec.
Bioanalytical methods that enable rapid and high-detail characterization of binding specificities and strengths of protein complexes with low sample consumption are highly desired. The interaction between a camelid single domain antibody (sdAbCSP1) and its target antigen (PfCSP-Cext) was selected as a model system to provide proof-of-principle for the here described methodology.
The structure of the sdAbCSP1 - PfCSP-Cext complex was modeled using AlphaFold2. The recombinantly expressed proteins, sdAbCSP1, PfCSP-Cext, and the sdAbCSP1 - PfCSP-Cext complex, were subjected to limited proteolysis and mass spectrometric peptide analysis. ITEM MS (Intact Transition Epitope Mapping Mass Spectrometry) and ITC (Isothermal Titration Calorimetry) were applied to determine stoichiometry and binding strength.
The paratope of sdAbCSP1 mainly consists of its CDR3 (aa100-118). PfCSP-Cext's epitope is assembled from its α-helix (aa40-52) and opposing loop (aa83-90). PfCSP-Cext's GluC cleavage sites E46 and E58 were shielded by complex formation, confirming the predicted epitope. Likewise, sdAbCSP1's tryptic cleavage sites R105 and R108 were shielded by complex formation, confirming the predicted paratope. ITEM MS determined the 1:1 stoichiometry and the high complex binding strength, exemplified by the gas phase dissociation reaction enthalpy of 50.2 kJ/mol. The complex dissociation constant is 5 × 10 M.
Combining AlphaFold2 modeling with mass spectrometry/limited proteolysis generated a trustworthy model for the sdAbCSP1 - PfCSP-Cext complex interaction interface.
非常需要能够以低样品消耗对蛋白质复合物的结合特异性和强度进行快速且高细节表征的生物分析方法。选择骆驼科单域抗体(sdAbCSP1)与其靶抗原(PfCSP-Cext)之间的相互作用作为模型系统,为本文所述方法提供原理验证。
使用AlphaFold2对sdAbCSP1 - PfCSP-Cext复合物的结构进行建模。对重组表达的蛋白质sdAbCSP1、PfCSP-Cext以及sdAbCSP1 - PfCSP-Cext复合物进行有限蛋白酶解和质谱肽分析。应用完整过渡表位映射质谱法(ITEM MS)和等温滴定量热法(ITC)来确定化学计量和结合强度。
sdAbCSP1的互补决定区主要由其CDR3(aa100 - 118)组成。PfCSP-Cext的表位由其α螺旋(aa40 - 52)和相对的环(aa83 - 90)组装而成。PfCSP-Cext的GluC切割位点E46和E58通过复合物形成被屏蔽,证实了预测的表位。同样,sdAbCSP1的胰蛋白酶切割位点R105和R108通过复合物形成被屏蔽,证实了预测的互补决定区。ITEM MS确定了1:1的化学计量和高复合物结合强度,以气相解离反应焓50.2 kJ/mol为例。复合物解离常数为5×10 M。
将AlphaFold2建模与质谱/有限蛋白酶解相结合,为sdAbCSP1 - PfCSP-Cext复合物相互作用界面生成了一个可靠的模型。