Suppr超能文献

通过聚合物空穴传输层的热转变和薄膜结晶工程提高钙钛矿太阳能电池的热稳定性

Enhancing Thermal Stability of Perovskite Solar Cells through Thermal Transition and Thin Film Crystallization Engineering of Polymeric Hole Transport Layers.

作者信息

Kim Sanggyun, Sabury Sina, Perini Carlo A R, Hossain Tareq, Yusuf Augustine O, Xiao Xiangyu, Li Ruipeng, Graham Kenneth R, Reynolds John R, Correa-Baena Juan-Pablo

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

School of Chemistry and Biochemistry, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

出版信息

ACS Energy Lett. 2024 Aug 22;9(9):4501-4508. doi: 10.1021/acsenergylett.4c01546. eCollection 2024 Sep 13.

Abstract

Organic hole transport layers (HTLs) have been known to be susceptible to thermal stress, leading to poor long-term stability in perovskite solar cells (PSCs). We synthesized three 2,5-dialkoxy-substituted, 1,4-bis(2-thienyl)phenylene (TPT)-based conjugated polymers (CPs) linked with thiophene-based (thiophene (T) and thienothiophene (TT)) comonomers and evaluated them as HTLs in n-i-p PSCs. TPT-T (MB/C6), which has branched 2-methylbutyl and linear hexyl (MB/C6) side chains, emerged as a promising HTL candidate, enabling power conversion efficiencies (PCEs) greater than 15%. In addition, PSCs with this HTL showed an improvement in long-term stability at elevated temperatures of 65 °C when compared to those with the state-of-art HTL, 2,2',7,7'-tetrakis(-dimethoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD). This improvement is ascribed to the lack of thermal transitions within the operational temperature range of PSCs for TPT-T (MB/C6), which is attributed to the relatively short branched side chains of this polymer. We propose that the elimination of thermal transitions below 200 °C leads to HTLs without cracking as-deposited and after conducting a stress test at 65 °C, which can serve as a new design guideline for HTL development.

摘要

有机空穴传输层(HTLs)已知易受热应力影响,导致钙钛矿太阳能电池(PSCs)的长期稳定性较差。我们合成了三种与基于噻吩的(噻吩(T)和噻吩并噻吩(TT))共聚单体相连的基于2,5-二烷氧基取代的1,4-双(2-噻吩基)亚苯基(TPT)的共轭聚合物(CPs),并将它们评估为n-i-p型PSCs中的HTLs。具有支链2-甲基丁基和直链己基(MB/C6)侧链的TPT-T(MB/C6)成为一种有前景的HTL候选物,其功率转换效率(PCEs)大于15%。此外,与使用最先进的HTL 2,2',7,7'-四(-二甲氧基苯基氨基)-9,9'-螺二芴(spiro-OMeTAD)的PSCs相比,具有这种HTL的PSCs在65℃的高温下长期稳定性有所提高。这种提高归因于TPT-T(MB/C6)在PSCs工作温度范围内缺乏热转变,这是由于该聚合物的支链侧链相对较短。我们提出,消除低于200℃的热转变会导致HTLs在沉积时和在65℃进行应力测试后不会开裂,这可以作为HTL开发的新设计指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef31/11406513/bcce2bf7c856/nz4c01546_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验