Suppr超能文献

利用基于机器学习的虚拟筛选、ADMET分析、分子对接和分子动力学模拟鉴定严重急性呼吸综合征冠状病毒2(SARS-CoV-2)靶点3CL蛋白酶的先导抑制剂。

Identification of lead inhibitors for 3CLpro of SARS-CoV-2 target using machine learning based virtual screening, ADMET analysis, molecular docking and molecular dynamics simulations.

作者信息

Chhetri Sandeep Poudel, Bhandari Vishal Singh, Maharjan Rajesh, Lamichhane Tika Ram

机构信息

Central Department of Physics, Tribhuvan University Kathmandu 44600 Nepal

Central Department of Chemistry, Tribhuvan University Kathmandu 44600 Nepal.

出版信息

RSC Adv. 2024 Sep 18;14(40):29683-29692. doi: 10.1039/d4ra04502e. eCollection 2024 Sep 12.

Abstract

The SARS-CoV-2 3CLpro is a critical target for COVID-19 therapeutics due to its role in viral replication. We employed a screening pipeline to identify novel inhibitors by combining machine learning classification with similarity checks of approved medications. A voting classifier, integrating three machine learning classifiers, was used to filter a large database (∼10 million compounds) for potential inhibitors. This ensemble-based machine learning technique enhances overall performance and robustness compared to individual classifiers. From the screening, three compounds M1, M2 and M3 were selected for further analysis. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis compared these candidates to nirmatrelvir and azvudine. Molecular docking followed by 200 ns MD simulations showed that only M1 (6-[2,4-bis(dimethylamino)-6,8-dihydro-5-pyrido[3,4-d]pyrimidine-7-carbonyl]-1-pyrimidine-2,4-dione) remained stable. For azvudine and M1, the estimated median lethal doses are 1000 and 550 mg kg, respectively, with maximum tolerated doses of 0.289 and 0.614 log mg per kg per day. The predicted inhibitory activity of M1 is 7.35, similar to that of nirmatrelvir. The binding free energy based on Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) of M1 is -18.86 ± 4.38 kcal mol, indicating strong binding interactions. These findings suggest that M1 merits further investigation as a potential SARS-CoV-2 treatment.

摘要

由于其在病毒复制中的作用,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)3C样蛋白酶(3CLpro)是治疗冠状病毒病(COVID-19)的关键靶点。我们采用了一种筛选流程,通过将机器学习分类与已批准药物的相似性检查相结合来识别新型抑制剂。一个整合了三个机器学习分类器的投票分类器被用于从一个大型数据库(约1000万种化合物)中筛选潜在抑制剂。与单个分类器相比,这种基于集成的机器学习技术提高了整体性能和稳健性。通过筛选,选择了三种化合物M1、M2和M3进行进一步分析。吸收、分布、代谢、排泄和毒性(ADMET)分析将这些候选物与奈玛特韦和阿兹夫定进行了比较。分子对接后进行200纳秒的分子动力学(MD)模拟表明,只有M1(6-[2,4-双(二甲氨基)-6,8-二氢-5-吡啶并[3,4-d]嘧啶-7-羰基]-1-嘧啶-2,4-二酮)保持稳定。对于阿兹夫定和M1,估计的半数致死剂量分别为1000和550毫克/千克,每日最大耐受剂量分别为0.289和0.614对数毫克/千克。M1的预测抑制活性为7.35,与奈玛特韦相似。基于分子力学泊松-玻尔兹曼表面积(MM-PBSA)的M1结合自由能为-18.86±4.38千卡/摩尔,表明存在强结合相互作用。这些发现表明,M1作为一种潜在的SARS-CoV-2治疗药物值得进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验