Shrestha Ram Lal Swagat, Tamang Ashika, Poudel Chhetri Sandeep, Parajuli Nirmal, Poudel Manila, M C Shiva, Shrestha Aakar, Shrestha Timila, Bharati Samjhana, Maharjan Binita, Marasini Bishnu P, Adhikari Subin Jhashanath
Department of Chemistry, Amrit Campus, Tribhuvan University, Lainchaur, Kathmandu, Nepal.
Kathmandu Valley College, Syuchatar Bridge, Kalanki, Kathmandu, Nepal.
PLoS One. 2025 Sep 11;20(9):e0331837. doi: 10.1371/journal.pone.0331837. eCollection 2025.
Fibroblast growth factor receptor 1 (FGFR1) is recognized as an oncogene that fosters tumor development, playing a vital role in cancer progression. This has established it as a promising target for cancer drug development. However, existing FGFR1 inhibitors are often limited by drug resistance and lack of specificity, emphasizing the need for more selective and potent alternatives. To address this challenge, the present study employed an AI-driven virtual screening approach, integrating molecular docking (MD) and molecular dynamics simulations (MDS) to discover novel FGFR1 inhibitors. A voting classifier integrating three machine learning classifiers was utilized to screen 10 million compounds from the eMolecules database, leading to 44 promising candidates with a prediction probability exceeding 80%. MD identified compound with PubChem Compound Identifier (CID) 165426608 (-10.8 kcal/mol) as the highest-scoring ligand, while compounds with CID 145940129 (-9.8 kcal/mol), CID 131910163 (-9.4 kcal/mol), CID 155915988 (-9.2 kcal/mol), and CID 132423733 (-9.1 kcal/mol), exhibited binding affinities comparable to or slightly lower than that of the native ligand (-10.4 kcal/mol). MDS further revealed that all these compounds, except CID 131910163, maintained structural stability with time. Thermodynamic stability assessment confirmed the spontaneity and feasibility of their complex formation reactions with negative ΔGBFE values ranging from -21.87 to -12.76 kcal/mol. Decomposition of binding free energy change further provided key stabilizing residues. The heatmaps and histograms of the interaction over the full 200 ns simulation period highlighted the prominent interaction profiles. Structural similarity analysis of the four MDS-stable compounds displayed the dice similarity scores of 0.200000 to 0.452830 with known FGFR1 inhibitors. Additionally, the pIC50 prediction using a voting regressor indicated promising pIC50 values (7.07 to 7.47), highlighting their potential as hit candidates for further structural optimization and therapeutic development. Further, this study underscores the efficiency of machine learning-based virtual screening and in silico analysis as a cost-effective and reliable strategy for accelerating hit drug discovery from large datasets, even with limited resources and time.
成纤维细胞生长因子受体1(FGFR1)被认为是一种促进肿瘤发展的致癌基因,在癌症进展中起着至关重要的作用。这使其成为癌症药物开发的一个有前景的靶点。然而,现有的FGFR1抑制剂往往受到耐药性和缺乏特异性的限制,这凸显了对更具选择性和强效的替代药物的需求。为应对这一挑战,本研究采用了一种人工智能驱动的虚拟筛选方法,整合分子对接(MD)和分子动力学模拟(MDS)来发现新型FGFR1抑制剂。利用一个整合了三个机器学习分类器的投票分类器从eMolecules数据库中筛选了1000万种化合物,得到了44个预测概率超过80%的有前景的候选化合物。MD确定PubChem化合物标识符(CID)为165426608的化合物(-10.8千卡/摩尔)是得分最高的配体,而CID为145940129(-9.8千卡/摩尔)、CID为131910163(-9.4千卡/摩尔)、CID为155915988(-9.2千卡/摩尔)和CID为132423733(-9.1千卡/摩尔)的化合物表现出与天然配体(-10.4千卡/摩尔)相当或略低的结合亲和力。MDS进一步表明,除了CID为131910163的化合物外,所有这些化合物随时间保持结构稳定性。热力学稳定性评估证实了它们与FGFR1形成复合物反应的自发性和可行性,其负的ΔGBFE值范围为-21.87至-12.76千卡/摩尔。结合自由能变化的分解进一步提供了关键稳定残基。在整个200纳秒模拟期内相互作用的热图和直方图突出了显著的相互作用特征。对四种MDS稳定的化合物进行的结构相似性分析显示,它们与已知FGFR1抑制剂的骰子相似性得分在0.200000至0.452830之间。此外,使用投票回归器进行的pIC50预测表明其pIC50值很有前景(7.07至7.47),突出了它们作为进一步结构优化和治疗开发的命中候选物的潜力。此外,本研究强调了基于机器学习的虚拟筛选和计算机模拟分析作为一种经济高效且可靠的策略在从大型数据集中加速发现命中药物方面的效率,即使资源和时间有限。