Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, China.
School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, China.
Curr Med Imaging. 2024;20:e15734056324977. doi: 10.2174/0115734056324977240911073841.
Patients with malignant tumors often develop bone metastases. SPECT bone scintigraphy is an effective tool for surveying bone metastases due to its high sensitivity, low-cost equipment, and radiopharmaceutical. However, the low spatial resolution of SPECT scans significantly hinders manual analysis by nuclear medicine physicians. Deep learning, a promising technique for automated image analysis, can extract hierarchal patterns from images without human intervention.
To enhance the performance of deep learning-based segmentation models, we integrate textual data from diagnostic reports with SPECT bone scans, aiming to develop an automated analysis method that outperforms purely unimodal data-driven segmentation models.
We propose a dual-path segmentation framework to extract features from bone scan images and diagnostic reports separately. In the first path, an encoder-decoder network is employed to learn hierarchical representations of features from SPECT bone scan images. In the second path, the Chinese version of the MacBERT model is utilized to develop a text encoder for extracting features from diagnostic reports. The extracted textual features are then fused with image features during the decoding stage in the first path, enhancing the overall segmentation performance.
Experimental evaluation conducted on real-world clinical data demonstrated the superior performance of the proposed segmentation model. Our model achieved a 0.0209 increase in the DSC (Dice Similarity Coefficient) score compared to the well-known U-Net model.
The proposed multimodal data-driven method effectively identifies and isolates metastasis lesions in SPECT bone scans, outperforming existing classical deep learning models. This study demonstrates the value of incorporating textual data in the deep learning-based segmentation of lowresolution SPECT bone scans.
恶性肿瘤患者常发生骨转移。SPECT 骨扫描是一种有效的骨转移探测工具,具有高灵敏度、设备成本低和放射性药物的优势。然而,SPECT 扫描的空间分辨率低,严重限制了核医学医师的手动分析。深度学习是一种自动化图像分析的有前途的技术,可以在无需人工干预的情况下从图像中提取层次模式。
为了提高基于深度学习的分割模型的性能,我们整合了诊断报告中的文本数据和 SPECT 骨扫描数据,旨在开发一种自动化分析方法,其性能优于单纯的基于单模态数据驱动的分割模型。
我们提出了一种双路径分割框架,分别从骨扫描图像和诊断报告中提取特征。在第一个路径中,采用编码器-解码器网络从 SPECT 骨扫描图像中学习特征的层次表示。在第二个路径中,利用中文版本的 MacBERT 模型开发了一种从诊断报告中提取特征的文本编码器。在第一个路径的解码阶段,将提取的文本特征与图像特征融合,从而提高整体分割性能。
在真实临床数据上进行的实验评估表明,所提出的分割模型具有优越的性能。与著名的 U-Net 模型相比,我们的模型在 DSC(Dice 相似系数)评分上提高了 0.0209。
所提出的基于多模态数据驱动的方法能够有效地识别和分离 SPECT 骨扫描中的转移病灶,优于现有的经典深度学习模型。这项研究证明了在低分辨率 SPECT 骨扫描的深度学习分割中结合文本数据的价值。