Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA.
Department of Computer Science, University of Cincinnati, Cincinnati, USA.
J Gastroenterol. 2024 Nov;59(11):963-978. doi: 10.1007/s00535-024-02151-6. Epub 2024 Sep 19.
Eosinophilic esophagitis (EoE) is a chronic, allergic inflammatory disease of the esophagus characterized by eosinophil accumulation and has a growing global prevalence. EoE significantly impairs quality of life and poses a substantial burden on healthcare resources. Currently, only two FDA-approved medications exist for EoE, highlighting the need for broader research into its management and prevention. Recent advancements in omics technologies, such as genomics, epigenetics, transcriptomics, proteomics, and others, offer new insights into the genetic and immunologic mechanisms underlying EoE. Genomic studies have identified genetic loci and mutations associated with EoE, revealing predispositions that vary by ancestry and indicating EoE's complex genetic basis. Epigenetic studies have uncovered changes in DNA methylation and chromatin structure that affect gene expression, influencing EoE pathology. Transcriptomic analyses have revealed a distinct gene expression profile in EoE, dominated by genes involved in activated type 2 immunity and epithelial barrier function. Proteomic approaches have furthered the understanding of EoE mechanisms, identifying potential new biomarkers and therapeutic targets. However, challenges in integrating diverse omics data persist, largely due to their complexity and the need for advanced computational methods. Machine learning is emerging as a valuable tool for analyzing extensive and intricate datasets, potentially revealing new aspects of EoE pathogenesis. The integration of multi-omics data through sophisticated computational approaches promises significant advancements in our understanding of EoE, improving diagnostics, and enhancing treatment effectiveness. This review synthesizes current omics research and explores future directions for comprehensively understanding the disease mechanisms in EoE.
嗜酸粒细胞性食管炎 (EoE) 是一种慢性、过敏炎症性食管疾病,其特征是嗜酸性粒细胞聚集,且在全球的患病率呈上升趋势。EoE 显著降低生活质量,并对医疗资源造成巨大负担。目前,仅有两种 FDA 批准的药物可用于治疗 EoE,突显了对其管理和预防进行更广泛研究的必要性。近年来,组学技术(如基因组学、表观遗传学、转录组学、蛋白质组学等)的进展为 EoE 的遗传和免疫机制提供了新的见解。基因组研究已经确定了与 EoE 相关的遗传位点和突变,揭示了不同种族的易感性差异,并表明 EoE 具有复杂的遗传基础。表观遗传学研究揭示了 DNA 甲基化和染色质结构的变化,这些变化影响基因表达,从而影响 EoE 病理学。转录组分析揭示了 EoE 中独特的基因表达谱,主要涉及激活的 2 型免疫和上皮屏障功能相关的基因。蛋白质组学方法进一步加深了对 EoE 机制的理解,确定了潜在的新生物标志物和治疗靶点。然而,整合多样化组学数据的挑战仍然存在,主要是由于其复杂性和对先进计算方法的需求。机器学习正成为分析大量复杂数据集的有价值工具,可能揭示 EoE 发病机制的新方面。通过复杂的计算方法整合多组学数据有望在深入理解 EoE 发病机制方面取得重大进展,改善诊断并提高治疗效果。本综述综合了当前的组学研究,并探讨了全面理解 EoE 疾病机制的未来方向。
J Gastroenterol. 2024-11
Gastroenterology. 2013-8-23
J Allergy Clin Immunol. 2022-3
J Allergy Clin Immunol. 2021-1
J Allergy Clin Immunol. 2024-6
J Allergy Clin Immunol. 2024-5
Am J Hum Genet. 2024-2-1
J Allergy Clin Immunol. 2024-4
J Pediatr Pharmacol Ther. 2023
Clin Gastroenterol Hepatol. 2024-7
J Allergy Clin Immunol Glob. 2023-7-20