Sottatipreedawong Muratha, Kazmi Ahad Ali, Vercellino Irene
Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE).
Microsc Microanal. 2025 Feb 17;31(1). doi: 10.1093/mam/ozae089.
Ten years ago, the term "resolution revolution" was used for the first time to describe how cryogenic electron microscopy (cryo-EM) marked the beginning of a new era in the field of structural biology, enabling the investigation of previously unsolvable protein targets. The success of cryo-EM was recognized with the 2017 Chemistry Nobel Prize and has become a widely used method for the structural characterization of biological macromolecules, quickly catching up to x-ray crystallography. Bioenergetics is the division of biochemistry that studies the mechanisms of energy conversion in living organisms, strongly focused on the molecular machines (enzymes) that carry out these processes in cells. As bioenergetic enzymes can be arranged in complexes characterized by conformational heterogeneity/flexibility, they represent challenging targets for structural investigation by crystallography. Over the last decade, cryo-EM has therefore become a powerful tool to investigate the structure and function of bioenergetic complexes; here, we provide an overview of the main achievements enabled by the technique. We first summarize the features of cryo-EM and compare them to x-ray crystallography, and then, we present the exciting discoveries brought about by cryo-EM, particularly but not exclusively focusing on the oxidative phosphorylation system, which is a crucial energy-converting mechanism in humans.
十年前,“分辨率革命”一词首次被用来描述低温电子显微镜(cryo-EM)如何标志着结构生物学领域一个新时代的开端,使得对以前无法解决的蛋白质靶点进行研究成为可能。低温电子显微镜的成功获得了2017年诺贝尔化学奖的认可,并已成为一种广泛用于生物大分子结构表征的方法,迅速赶上了X射线晶体学。生物能量学是生物化学的一个分支,研究活生物体中能量转换的机制,特别关注细胞中执行这些过程的分子机器(酶)。由于生物能量酶可以排列成具有构象异质性/灵活性的复合物,它们是晶体学结构研究中具有挑战性的靶点。因此,在过去十年中,低温电子显微镜已成为研究生物能量复合物结构和功能的强大工具;在此,我们概述了该技术所取得的主要成就。我们首先总结低温电子显微镜的特点,并将其与X射线晶体学进行比较,然后,我们展示低温电子显微镜带来的令人兴奋的发现,特别但不限于关注氧化磷酸化系统,这是人类至关重要的能量转换机制。