Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; email:
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
Annu Rev Biophys. 2022 May 9;51:19-38. doi: 10.1146/annurev-biophys-100121-075228. Epub 2021 Dec 21.
Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly in solving the structures of large protein complexes or cellular machineries that play important biological functions. This review focuses on the contribution and future potential of cryo-EM in related emerging applications-enzymatic mechanisms and dynamic processes. Work on these subjects can benefit greatly from the capability of cryo-EM to solve the structures of specific protein complexes in multiple conditions, including variations in the buffer condition, ligands, and temperature, and to capture multiple conformational states, conformational change intermediates, and reaction intermediates. These studies can expand the structural landscape of specific proteins or protein complexes in multiple dimensions and drive new advances in the fields of enzymology and dynamic processes. The advantages and complementarity of cryo-EM relative to X-ray crystallography and nuclear magnetic resonance with regard to these applications are also addressed.
低温电子显微镜(cryo-EM)技术已经彻底改变了结构生物学领域,特别是在解决具有重要生物学功能的大型蛋白质复合物或细胞机器的结构方面。本综述重点介绍了 cryo-EM 在相关新兴应用领域——酶促机制和动态过程中的贡献和未来潜力。在这些课题上的工作可以极大地受益于 cryo-EM 能够在多种条件下解决特定蛋白质复合物的结构,包括缓冲条件、配体和温度的变化,以及捕获多个构象状态、构象变化中间体和反应中间体的能力。这些研究可以在多个维度上扩展特定蛋白质或蛋白质复合物的结构景观,并推动酶学和动态过程领域的新进展。本文还讨论了 cryo-EM 相对于 X 射线晶体学和核磁共振在这些应用中的优势和互补性。