Suppr超能文献

电催化芳醇裂解为醛和氢气

Electrocatalytic Aromatic Alcohols Splitting to Aldehydes and H Gas.

作者信息

Zhang Zhao, Leng Bing-Liang, Zhang Shi-Nan, Xu Dong, Li Qi-Yuan, Lin Xiu, Chen Jie-Sheng, Li Xin-Hao

机构信息

School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China.

出版信息

J Am Chem Soc. 2024 Oct 2;146(39):27179-27185. doi: 10.1021/jacs.4c10685. Epub 2024 Sep 19.

Abstract

Selective electrocatalytic transformation of alcohols to aldehydes offers an efficient and environmentally friendly platform for the simultaneous production of fine chemicals and pure hydrogen gas. However, traditional alcohol oxidation reactions (AORs) in aqueous electrolyte unavoidably face competitive reactions (e.g., water oxidation and overoxidations reactions) for the presence of active oxygen species from water oxidation, causing an unwanted decrease in final efficiency and selectivity. Here, we developed an integrated all-solid proton generator-transfer electrolyzer to trigger the pure alcohol splitting reaction (ASR). In this splitting process, only O-H and C-H bonds can be cleaved at the proton generator (Pt nanoparticles), thereby completely avoiding all competitive reactions involving oxygen active species to give a > 99% selectivity to aldehydes. The as-generated protons are transported to the cathode by a three-dimensional (3D) conducting network (assemblies of ionomers and carbon spheres) for efficient hydrogen production. Unlike the poor selectivity (<22%) and durability (<3 h) of a conventional AOR electrolyzer, this ASR electrolyzer could be continuously operated at a low cell voltage of 1.2 V for at least 10 days to give a high Faradaic efficiency of 80-93% for aldehyde production.

摘要

将醇选择性电催化转化为醛为同时生产精细化学品和纯氢气提供了一个高效且环保的平台。然而,由于水氧化产生的活性氧物种的存在,水性电解质中的传统醇氧化反应(AORs)不可避免地面临竞争反应(例如水氧化和过度氧化反应),导致最终效率和选择性出现不必要的降低。在此,我们开发了一种集成的全固体质子发生器 - 转移电解槽来引发纯醇裂解反应(ASR)。在这个裂解过程中,只有O - H键和C - H键能在质子发生器(铂纳米颗粒)处断裂,从而完全避免了所有涉及氧活性物种的竞争反应,对醛的选择性大于99%。产生的质子通过三维(3D)导电网络(离聚物和碳球组件)传输到阴极以高效产氢。与传统AOR电解槽较差的选择性(<22%)和耐久性(<3小时)不同,这种ASR电解槽可以在1.2 V的低电池电压下连续运行至少10天,醛生产的法拉第效率高达80 - 93%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验