Qin Yu, Fasy Brittany Terese, Wenk Carola, Summa Brian
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1322-1332. doi: 10.1109/TVCG.2024.3456395. Epub 2024 Nov 25.
Merge trees are a valuable tool in the scientific visualization of scalar fields; however, current methods for merge tree comparisons are computationally expensive, primarily due to the exhaustive matching between tree nodes. To address this challenge, we introduce the Merge Tree Neural Network (MTNN), a learned neural network model designed for merge tree comparison. The MTNN enables rapid and high-quality similarity computation. We first demonstrate how to train graph neural networks, which emerged as effective encoders for graphs, in order to produce embeddings of merge trees in vector spaces for efficient similarity comparison. Next, we formulate the novel MTNN model that further improves the similarity comparisons by integrating the tree and node embeddings with a new topological attention mechanism. We demonstrate the effectiveness of our model on real-world data in different domains and examine our model's generalizability across various datasets. Our experimental analysis demonstrates our approach's superiority in accuracy and efficiency. In particular, we speed up the prior state-of-the-art by more than 100× on the benchmark datasets while maintaining an error rate below 0.1%.
合并树是标量场科学可视化中的一种重要工具;然而,当前用于合并树比较的方法计算成本高昂,主要原因是树节点之间的详尽匹配。为应对这一挑战,我们引入了合并树神经网络(MTNN),这是一种为合并树比较而设计的经过学习的神经网络模型。MTNN能够实现快速且高质量的相似度计算。我们首先展示如何训练作为图的有效编码器而出现的图神经网络,以便在向量空间中生成合并树的嵌入,用于高效的相似度比较。接下来,我们构建了新颖的MTNN模型,通过一种新的拓扑注意力机制将树嵌入和节点嵌入相结合,进一步改进相似度比较。我们在不同领域的真实数据上展示了我们模型的有效性,并检验了我们模型在各种数据集上的通用性。我们的实验分析证明了我们方法在准确性和效率方面的优越性。特别是,我们在基准数据集上比先前的最先进方法提速超过100倍,同时保持错误率低于0.1%。