Suppr超能文献

用于分子图表示学习和性质预测的集成模糊神经网络与拓扑数据分析

An Integrated Fuzzy Neural Network and Topological Data Analysis for Molecular Graph Representation Learning and Property Forecasting.

作者信息

Pham Phu

机构信息

Faculty of Information Technology, HUTECH University, Ho Chi Minh City, Vietnam.

出版信息

Mol Inform. 2025 Mar;44(3):e202400335. doi: 10.1002/minf.202400335.

Abstract

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures. These models primarily focus on capturing local neighborhood information, often failing to retain global structural features essential for graph-level representation and classification tasks. Furthermore, their expressiveness is limited when learning topological structures in complex molecular graph datasets. To overcome these limitations, in this paper, we proposed a novel graph neural architecture which is an integration between neuro-fuzzy network and topological graph learning approach, naming as: FTPG. Specifically, within our proposed FTPG model, we introduce a novel approach to molecular graph representation and property prediction by integrating multi-scaled topological graph learning with advanced neural components. The architecture employs separate graph neural learning modules to effectively capture both local graph-based structures as well as global topological features. Moreover, to further address feature uncertainty in the global-view representation, a multi-layered neuro-fuzzy network is incorporated within our model to enhance the robustness and expressiveness of the learned molecular graph embeddings. This combinatorial approach can assist to leverage the strengths of multi-view and multi-modal neural learning, enabling FTPG to deliver superior performance in molecular graph tasks. Extensive experiments on real-world/benchmark molecular datasets demonstrate the effectiveness of our proposed FTPG model. It consistently outperforms state-of-the-art GNN-based baselines categorized in different approaches, including canonical local proximity message passing based, graph transformer-based, and topology-driven approaches.

摘要

在最近十年中,图神经网络(GNN)已成为一种强大的神经架构,用于各种图结构数据建模和任务驱动的表示学习问题。最近的研究突出了GNN在处理复杂图表示学习任务方面的卓越能力,在节点/图分类、回归和生成方面取得了领先成果。然而,大多数基于传统GNN的架构,如GCN和GraphSAGE,在保留多尺度拓扑结构的能力方面仍面临若干挑战。这些模型主要专注于捕获局部邻域信息,往往无法保留对于图级表示和分类任务至关重要的全局结构特征。此外,在复杂分子图数据集中学习拓扑结构时,它们的表达能力有限。为了克服这些限制,在本文中,我们提出了一种新颖的图神经架构,它是神经模糊网络与拓扑图学习方法的集成,命名为:FTPG。具体而言,在我们提出的FTPG模型中,我们通过将多尺度拓扑图学习与先进的神经组件相结合,引入了一种用于分子图表示和属性预测的新颖方法。该架构采用单独的图神经学习模块,以有效捕获基于局部图的结构以及全局拓扑特征。此外,为了进一步解决全局视图表示中的特征不确定性,我们在模型中纳入了一个多层神经模糊网络,以增强所学习的分子图嵌入的鲁棒性和表达能力。这种组合方法有助于利用多视图和多模态神经学习的优势,使FTPG在分子图任务中表现出色。在真实世界/基准分子数据集上进行的大量实验证明了我们提出的FTPG模型的有效性。它始终优于基于GNN的不同方法分类的最新基线,包括基于规范局部邻近消息传递的方法、基于图变换器的方法和拓扑驱动的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验