Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India.
Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0227458.
Fear prompts prey to adopt risk-averse behaviors, such as reduced foraging activity, increased vigilance, and avoidance of areas with high predator presence, which affects its reproduction. In a real scenario, a population requires a minimum density to avoid extinction, known as an Allee threshold. In light of these biological factors, we propose a predator-prey model with (i) a fear effect in a prey population, (ii) an Allee effect in a predator population, and (iii) a non-constant attack rate that modifies the functional response. We ensured the non-negativity and boundedness of the solutions and examined the local and global stability status for each existing steady state solutions. We investigated some deep dynamical properties of the system by varying different parameters, such as cost of fear in prey and strength of the Allee effect in predators and their mortality rate. In codimension one bifurcations, we observed saddle node, Hopf, homoclinic, and coalescence of two limit cycles. Additionally, codimension two bifurcations were observed, including Bautin and Bogdanov Takens bifurcations. To provide a clearer understanding of these bifurcations, we conducted biparametric analysis involving the fear and Allee parameters, as well as the fear parameter and predator mortality rate. Our investigation shows that cost of fear and strength of Allee strongly influences the survival status of the predator. Furthermore, bistability and tristability reveal that the survival and extinction of predator are dependent on the initial population level. Numerical simulations and graphical illustrations are provided to support and validate our theoretical findings.
恐惧促使猎物采取避险行为,例如减少觅食活动、增加警戒和避免高捕食者存在的区域,这会影响其繁殖。在现实场景中,种群需要达到最小密度以避免灭绝,这被称为阿利(Allee)阈值。鉴于这些生物因素,我们提出了一个具有(i)猎物种群中恐惧效应、(ii)捕食者种群中阿利效应和(iii)改变功能反应的非恒定攻击率的捕食者-猎物模型。我们确保了每个存在的稳定状态解的解的非负性和有界性,并研究了每个稳定状态解的局部和全局稳定性状态。我们通过改变猎物的恐惧成本、捕食者的阿利效应强度及其死亡率等不同参数,研究了系统的一些深层次动力学特性。在余维一分叉中,我们观察到了鞍结、Hopf、同宿和两个极限环的合并分叉。此外,还观察到了余维二分叉,包括 Bautin 和 Bogdanov-Takens 分叉。为了更清楚地理解这些分叉,我们进行了涉及恐惧和阿利参数以及恐惧参数和捕食者死亡率的双参数分析。我们的研究表明,恐惧成本和阿利效应强度强烈影响捕食者的生存状态。此外,双稳性和三稳性表明捕食者的生存和灭绝取决于初始种群水平。提供了数值模拟和图形说明来支持和验证我们的理论发现。