Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia.
Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia.
ACS Synth Biol. 2024 Oct 18;13(10):3128-3136. doi: 10.1021/acssynbio.4c00407. Epub 2024 Sep 19.
Base editing technologies enable programmable single-nucleotide changes in target DNA without double-stranded DNA breaks. Adenine base editors (ABEs) allow precise conversion of adenine (A) to guanine (G). However, limited availability of optimized deaminases as well as their variable efficiencies across different target sequences can limit the ability of ABEs to achieve effective adenine editing. Here, we explored the use of a TurboCas9 nickase in an ABE to improve its genome editing activity. The resulting TurboABE exhibits amplified editing efficiency on a variety of adenine target sites without increasing off-target editing in DNA and RNA. An interesting feature of TurboABE is its ability to significantly improve the editing frequency at bases with normally inefficient editing rates in the editing window of each target DNA. Development of improved ABEs provides new possibilities for precise genetic modification of genes in living cells.
碱基编辑技术可在目标 DNA 中实现可编程的单碱基变化,而无需双链 DNA 断裂。腺嘌呤碱基编辑器 (ABE) 可实现精确的腺嘌呤 (A) 到鸟嘌呤 (G) 的转换。然而,优化的脱氨酶可用性有限,以及它们在不同靶序列中的可变效率,可能会限制 ABE 实现有效腺嘌呤编辑的能力。在这里,我们探索了在 ABE 中使用 TurboCas9 切口酶来提高其基因组编辑活性。所得到的 TurboABE 在各种腺嘌呤靶位点上表现出增强的编辑效率,而不会增加 DNA 和 RNA 中的脱靶编辑。TurboABE 的一个有趣特征是,它能够显著提高编辑窗口中每个靶 DNA 中通常编辑效率较低的碱基的编辑频率。改进的 ABE 的开发为在活细胞中精确基因修饰提供了新的可能性。