Suppr超能文献

甲烷氧化偶联与重金属和微塑料转化协同作用对生物炭介导的垃圾填埋场覆盖土壤的影响。

Methane oxidation coupling with heavy metal and microplastic transformations for biochar-mediated landfill cover soil.

机构信息

Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China.

Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China.

出版信息

J Hazard Mater. 2024 Dec 5;480:135879. doi: 10.1016/j.jhazmat.2024.135879. Epub 2024 Sep 17.

Abstract

The impact of co-occurring heavy metal (HM) and microplastic (MP) pollution on methane (CH) oxidation by methanotrophs (MOB) in landfill cover soil (LCS) and the role of biochar in mediating these collaborative transformations remains unclear. This study conducted batch-scale experiments using LCS treated with individual or combined HMs and MPs, with or without biochar amendment. Differentiation in methanotrophic activities, HM transformations, MP aging, soil properties, microbial communities, and functional genes across the groups were analyzed. Biochar proved essential in sustaining efficient CH oxidation under HM and MP stress, mainly by diversifying MOB, and enhancing polysaccharide secretion to mitigate environmental stress. While low levels of HMs slightly inhibited CH oxidation, high HM concentration enhanced methanotrophic activities by promoting electron transfer process. MPs consistently stimulated CH oxidation, exerting a stronger influence than HMs. Notably, the simultaneous presence of low levels of HMs and MPs synergistically boosted CH oxidation, linked to distinct microbial evolution and adaptation. Methanotrophic activities were demonstrated to affect the fate of HMs and MPs. Complete passivation of Cu was readily achieved, whereas Zn stabilization was negatively influenced by biochar and MPs. The aging of MPs was also partially suppressed by biochar and HM adsorption.

摘要

重金属 (HM) 和微塑料 (MP) 污染共存对填埋场覆盖土壤 (LCS) 中甲烷 (CH) 氧化菌 (MOB) 的影响,以及生物炭在调节这些协同转化中的作用尚不清楚。本研究使用单独或组合使用 HM 和 MPs 处理的 LCS 进行了批量实验,同时添加或不添加生物炭。分析了各组之间甲烷氧化菌活性、HM 转化、MP 老化、土壤特性、微生物群落和功能基因的差异。生物炭在 HM 和 MP 胁迫下维持高效 CH 氧化中是必不可少的,主要通过多样化 MOB 和增强多糖分泌来减轻环境压力。虽然低水平的 HM 轻微抑制 CH 氧化,但高 HM 浓度通过促进电子传递过程增强了甲烷氧化菌活性。 MPs 一直刺激 CH 氧化,其影响强于 HM。值得注意的是,低水平的 HM 和 MPs 同时存在会协同促进 CH 氧化,这与独特的微生物进化和适应有关。甲烷氧化菌活性会影响 HM 和 MPs 的归宿。Cu 很容易完全失活,而生物炭和 MPs 会对 Zn 的稳定产生负面影响。 MPs 的老化也部分被生物炭和 HM 吸附抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验