Yang Hu, Li Chang, Lü Linzhe, Li Zhuogen, Zhang Shiqi, Huang Zheng, Ma Rui, Liu Sisi, Ge Ming, Zhou Wei, Yuan Xiaolei
School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt C):300-308. doi: 10.1016/j.jcis.2024.09.111. Epub 2024 Sep 14.
Although Platinum (Pt)-based alloys have garnered significant interest within the realm of direct methanol fuel cells (DMFCs), there still exists a notable dearth in the exploration of the catalytic behavior of the liquid fuels on well-defined active sites and unavoidable Pt poisoning because of the adsorbed CO species (CO). Here, we propose an electronegativity-induced electronic redistribution strategy to optimize the adsorption of crucial intermediates for the methanol oxidation reaction (MOR) by introducing the Co element to form the PtCo alloys. The optimal PtCo hollow nanospheres (HNSs) exhibit excellent high-quality activity of 3.27 A mg, which is 11.6 times and 13.1 times higher than that of Pt/C and pure Pt, respectively. The in-situ Fourier transform infrared reflection spectroscopy validates that electron redistribution could weak CO adsorption, and subsequently decrease the CO poisoning adjacent the Pt active sites. Theoretical simulations result show that the introduction of Co optimize surface electronic structure and reduce the d-band center of Pt, thus optimized the adsorption behavior of CO. This study not only employs a straightforward method for the preparation of Pt-based alloys but also delineates a pathway toward designing advanced active sites for MOR via electronegativity-induced electronic redistribution.
尽管铂(Pt)基合金在直接甲醇燃料电池(DMFC)领域引起了广泛关注,但由于吸附的一氧化碳(CO)物种,在明确的活性位点上对液体燃料的催化行为探索以及不可避免的铂中毒方面仍存在明显不足。在此,我们提出一种电负性诱导的电子重新分布策略,通过引入钴元素形成PtCo合金来优化甲醇氧化反应(MOR)关键中间体的吸附。最优的PtCo空心纳米球(HNSs)展现出3.27 A mg的优异高质量活性,分别比Pt/C和纯Pt高11.6倍和13.1倍。原位傅里叶变换红外反射光谱证实电子重新分布可减弱CO吸附,进而降低Pt活性位点附近的CO中毒。理论模拟结果表明,Co的引入优化了表面电子结构并降低了Pt的d带中心,从而优化了CO的吸附行为。本研究不仅采用了一种简单的方法制备Pt基合金,还描绘了一条通过电负性诱导的电子重新分布设计MOR先进活性位点的途径。