Suppr超能文献

探索克莱夫斯特拉综合征队列的表型特征:来自照料者报告结果的患病率见解。

Exploring Kleefstra syndrome cohort phenotype characteristics: Prevalence insights from caregiver-reported outcomes.

作者信息

Zdolšek Draksler Tanja, Bouman Arianne, Guček Alenka, Novak Erik, Burger Pauline, Colin Florent, Kleefstra Tjitske

机构信息

International Research Centre on Artificial Intelligence (IRCAI) under the auspices of UNESCO, Jožef Stefan Institute, Ljubljana, Slovenia; IDefine Europe, Slovenia.

Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands.

出版信息

Eur J Med Genet. 2024 Dec;72:104974. doi: 10.1016/j.ejmg.2024.104974. Epub 2024 Sep 17.

Abstract

Kleefstra syndrome (KLEFS1) is a rare genetic neurodevelopmental disorder affecting multiple body systems. It continues to be under-researched, and its prevalence remains unknown. This paper builds on the international KLEFS1 cohort of 172 individuals based on the caregiver-reported outcomes collected within the online data collection platform GenIDA and reports the occurrence, frequency and severity of symptoms in KLEFS1. The study clearly shows the importance of caregiver-reported outcomes collections in the rare disease domain. Moreover, the study emphasizes the need for more specific and enhanced data collection methods, suggesting recommendations to optimize caregiver-reported registries and foster an even more profound understanding of rare diseases.

摘要

克莱夫斯特拉综合征(KLEFS1)是一种罕见的遗传性神经发育障碍,影响多个身体系统。该综合征仍未得到充分研究,其患病率也尚不清楚。本文基于在线数据收集平台GenIDA收集的照护者报告结果,对由172名个体组成的国际KLEFS1队列进行了研究,并报告了KLEFS1症状的发生情况、频率和严重程度。该研究明确显示了在罕见病领域收集照护者报告结果的重要性。此外,该研究强调了采用更具体、更完善的数据收集方法的必要性,并提出了优化照护者报告登记系统的建议,以促进对罕见病更深入的了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验