Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil.
Applied Physics Department, Institute of Physics 'Gleb Wataghin', University of Campinas, Campinas, São Paulo, Brazil.
Int J Antimicrob Agents. 2024 Nov;64(5):107340. doi: 10.1016/j.ijantimicag.2024.107340. Epub 2024 Sep 17.
The matrix of extracellular polymeric substances (EPS) present in biofilms greatly amplifies the problem of bacterial infections, protecting bacteria against antimicrobial treatments and eventually leading to bacterial resistance. The need for alternative treatments that destroy the EPS matrix becomes evident. N-acetylcysteine (NAC) is one option that presents diverse effects against bacteria; however, the different mechanisms of action of NAC in biofilms have yet to be elucidated.
In this work, we performed microscopy studies at micro and nano scales to address the effects of NAC at single cell level and early-stage biofilms of the Xylella fastidiosa phytopathogen.
We show the physical effects of NAC on the adhesion surface and the different types of EPS, as well as the mechanical response of individual bacteria to NAC concentrations between 2 and 20 mg/mL.
NAC modified the conditioning film on the substrate, broke down the soluble EPS, resulting in the release of adherent bacteria, decreased the volume of loosely bound EPS, and disrupted the biofilm matrix. Tightly bound EPS suffered structural alterations despite no solid evidence of its removal. In addition, bacterial force measurements upon NAC action performed with InP nanowire arrays showed an enhanced momentum transfer to the nanowires due to increased cell mobility resulting from EPS removal.
Our results clearly show that conditioning film and soluble EPS play a key role in cell adhesion control and that NAC alters EPS structure, providing solid evidence that NAC actuates mainly on EPS removal, both at single cell and biofilm levels.
生物膜中存在的细胞外聚合物(EPS)基质极大地加剧了细菌感染问题,使细菌能够抵御抗菌处理,最终导致细菌耐药性的产生。因此,需要寻找能够破坏 EPS 基质的替代治疗方法。N-乙酰半胱氨酸(NAC)是一种具有多种抗菌作用的选择,但是 NAC 在生物膜中的不同作用机制仍有待阐明。
在这项工作中,我们在微观和纳米尺度上进行了显微镜研究,以解决 NAC 在单个细胞水平和木质部难养菌植物病原菌早期生物膜中的作用。
我们展示了 NAC 对附着表面和不同类型 EPS 的物理影响,以及在 2 至 20mg/mL 之间的 NAC 浓度下,单个细菌对 NAC 的机械响应。
NAC 改变了基质上的调理膜,分解了可溶性 EPS,导致附着细菌的释放,减少了松散结合 EPS 的体积,并破坏了生物膜基质。尽管没有去除牢固结合 EPS 的直接证据,但 EPS 仍发生了结构改变。此外,使用 InP 纳米线阵列进行的 NAC 作用下的细菌力测量显示,由于 EPS 去除导致细胞迁移性增加,从而增强了向纳米线的动量传递。
我们的研究结果清楚地表明,调理膜和可溶性 EPS 在细胞附着控制中起着关键作用,NAC 改变了 EPS 的结构,为 NAC 主要通过去除 EPS 发挥作用提供了确凿的证据,这在单细胞和生物膜水平上都是如此。