Suppr超能文献

尽管非小细胞肺癌中 MHC I 类分子严重缺失,但自然杀伤细胞和 CD8 T 细胞的空间共存和联合生存获益。

Spatial colocalization and combined survival benefit of natural killer and CD8 T cells despite profound MHC class I loss in non-small cell lung cancer.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.

Department of Biology, University of Virginia, Charlottesville, Virginia, USA.

出版信息

J Immunother Cancer. 2024 Sep 18;12(9):e009126. doi: 10.1136/jitc-2024-009126.

Abstract

BACKGROUND

Major histocompatibility complex class I (MHC-I) loss is frequent in non-small cell lung cancer (NSCLC) rendering tumor cells resistant to T cell lysis. NK cells kill MHC-I-deficient tumor cells, and although previous work indicated their presence at NSCLC margins, they were functionally impaired. Within, we evaluated whether NK cell and CD8 T cell infiltration and activation vary with MHC-I expression.

METHODS

We used single-stain immunohistochemistry (IHC) and Kaplan-Meier analysis to test the effect of NK cell and CD8 T cell infiltration on overall and disease-free survival. To delineate immune covariates of MHC-I-disparate lung cancers, we used multiplexed immunofluorescence (mIF) imaging followed by multivariate statistical modeling. To identify differences in infiltration and intercellular communication between IFNγ-activated and non-activated lymphocytes, we developed a computational pipeline to enumerate single-cell neighborhoods from mIF images followed by multivariate discriminant analysis.

RESULTS

Spatial quantitation of tumor cell MHC-I expression revealed intratumoral and intertumoral heterogeneity, which was associated with the local lymphocyte landscape. IHC analysis revealed that high CD56 cell numbers in patient tumors were positively associated with disease-free survival (HR=0.58, p=0.064) and overall survival (OS) (HR=0.496, p=0.041). The OS association strengthened with high counts of both CD56 and CD8 cells (HR=0.199, p<1×10). mIF imaging and multivariate discriminant analysis revealed enrichment of both CD3CD8 T cells and CD3CD56 NK cells in MHC-I-bearing tumors (p<0.05). To infer associations of functional cell states and local cell-cell communication, we analyzed spatial single-cell neighborhood profiles to delineate the cellular environments of IFNγ NK cells and T cells. We discovered that both IFNγ NK and CD8 T cells were more frequently associated with other IFNγ lymphocytes in comparison to IFNγ NK cells and CD8 T cells (p<1×10). Moreover, IFNγ lymphocytes were most often found clustered near MHC-I tumor cells.

CONCLUSIONS

Tumor-infiltrating NK cells and CD8 T cells jointly affected control of NSCLC tumor progression. Coassociation of NK and CD8 T cells was most evident in MHC-I-bearing tumors, especially in the presence of IFNγ. Frequent colocalization of IFNγ NK cells with other IFNγ lymphocytes in near-neighbor analysis suggests NSCLC lymphocyte activation is coordinately regulated.

摘要

背景

主要组织相容性复合体 I 类 (MHC-I) 的缺失在非小细胞肺癌 (NSCLC) 中很常见,使肿瘤细胞对 T 细胞裂解具有抗性。NK 细胞杀死 MHC-I 缺陷的肿瘤细胞,尽管之前的工作表明它们存在于 NSCLC 边缘,但它们的功能受损。在本研究中,我们评估了 NK 细胞和 CD8 T 细胞浸润和激活是否随 MHC-I 表达而变化。

方法

我们使用单染免疫组化 (IHC) 和 Kaplan-Meier 分析来测试 NK 细胞和 CD8 T 细胞浸润对总生存期和无病生存期的影响。为了描绘 MHC-I 不同 NSCLC 的免疫协变量,我们使用多重免疫荧光 (mIF) 成像,然后进行多变量统计建模。为了识别 IFNγ 激活和未激活淋巴细胞浸润和细胞间通讯的差异,我们开发了一种计算流程来从 mIF 图像中对单细胞邻域进行计数,然后进行多变量判别分析。

结果

肿瘤细胞 MHC-I 表达的空间定量显示了肿瘤内和肿瘤间的异质性,这与局部淋巴细胞景观有关。IHC 分析显示,患者肿瘤中高 CD56 细胞数与无病生存期 (HR=0.58,p=0.064) 和总生存期 (OS) (HR=0.496,p=0.041) 呈正相关。随着 CD56 和 CD8 细胞计数的增加,OS 相关性增强(HR=0.199,p<1×10)。mIF 成像和多变量判别分析显示,MHC-I 阳性肿瘤中 CD3CD8 T 细胞和 CD3CD56 NK 细胞均有富集(p<0.05)。为了推断功能细胞状态和局部细胞间通讯的关联,我们分析了空间单细胞邻域谱,以描绘 IFNγ NK 细胞和 T 细胞的细胞环境。我们发现,与 IFNγ NK 细胞和 CD8 T 细胞相比,IFNγ NK 细胞和 CD8 T 细胞更常与其他 IFNγ 淋巴细胞相关(p<1×10)。此外,IFNγ 淋巴细胞最常聚集在 MHC-I 肿瘤细胞附近。

结论

肿瘤浸润性 NK 细胞和 CD8 T 细胞共同影响 NSCLC 肿瘤进展的控制。NK 细胞和 CD8 T 细胞的共同关联在 MHC-I 阳性肿瘤中最为明显,尤其是在存在 IFNγ 的情况下。在近邻分析中 IFNγ NK 细胞与其他 IFNγ 淋巴细胞的频繁共定位表明 NSCLC 淋巴细胞的激活是协调调节的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3846/11418484/65ebd029d5dc/jitc-12-9-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验