van der Graaf Jasper W, Brundel Liron, van Hooff Miranda L, de Kleuver Marinus, Lessmann Nikolas, Maresch Bas J, Vestering Myrthe M, Spermon Jacco, van Ginneken Bram, Rutten Matthieu J C M
Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.
Department of Orthopedics, Radboud University Medical Center, Nijmegen, The Netherlands.
Eur Radiol. 2025 Apr;35(4):2298-2306. doi: 10.1007/s00330-024-11080-0. Epub 2024 Sep 20.
The assessment of lumbar central canal stenosis (LCCS) is crucial for diagnosing and planning treatment for patients with low back pain and neurogenic pain. However, manual assessment methods are time-consuming, variable, and require axial MRIs. The aim of this study is to develop and validate an AI-based model that automatically classifies LCCS using sagittal T2-weighted MRIs.
A pre-existing 3D AI algorithm was utilized to segment the spinal canal and intervertebral discs (IVDs), enabling quantitative measurements at each IVD level. Four musculoskeletal radiologists graded 683 IVD levels from 186 LCCS patients using the 4-class Lee grading system. A second consensus reading was conducted by readers 1 and 2, which, along with automatic measurements, formed the training dataset for a multiclass (grade 0-3) and binary (grade 0-1 vs. 2-3) random forest classifier with tenfold cross-validation.
The multiclass model achieved a Cohen's weighted kappa of 0.86 (95% CI: 0.82-0.90), comparable to readers 3 and 4 with 0.85 (95% CI: 0.80-0.89) and 0.73 (95% CI: 0.68-0.79) respectively. The binary model demonstrated an AUC of 0.98 (95% CI: 0.97-0.99), sensitivity of 93% (95% CI: 91-96%), and specificity of 91% (95% CI: 87-95%). In comparison, readers 3 and 4 achieved a specificity of 98 and 99% and sensitivity of 74 and 54%, respectively.
Both the multiclass and binary models, while only using sagittal MR images, perform on par with experienced radiologists who also had access to axial sequences. This underscores the potential of this novel algorithm in enhancing diagnostic accuracy and efficiency in medical imaging.
Question How can the classification of lumbar central canal stenosis (LCCS) be made more efficient? Findings Multiclass and binary AI models, using only sagittal MR images, performed on par with experienced radiologists who also had access to axial sequences. Clinical relevance Our AI algorithm accurately classifies LCCS from sagittal MRI, matching experienced radiologists. This study offers a promising tool for automated LCCS assessment from sagittal T2 MRI, potentially reducing the reliance on additional axial imaging.
评估腰椎中央管狭窄症(LCCS)对于诊断和规划下腰痛及神经源性疼痛患者的治疗至关重要。然而,手动评估方法耗时、存在差异且需要轴向MRI。本研究的目的是开发并验证一种基于人工智能的模型,该模型使用矢状面T2加权MRI自动对LCCS进行分类。
利用现有的3D人工智能算法对椎管和椎间盘(IVD)进行分割,从而能够在每个IVD水平进行定量测量。四名肌肉骨骼放射科医生使用4级Lee分级系统对186例LCCS患者的683个IVD水平进行分级。读者1和读者2进行了第二次一致性阅读,这与自动测量结果一起构成了用于具有十折交叉验证的多类(0 - 3级)和二元(0 - 1级与2 - 3级)随机森林分类器的训练数据集。
多类模型的Cohen加权kappa值为0.86(95%CI:0.82 - 0.90),分别与读者3和读者4的0.85(95%CI:0.80 - 0.89)和0.73(95%CI:0.68 - 0.79)相当。二元模型的AUC为0.98(95%CI:0.97 - 0.99),灵敏度为93%(95%CI:91 - 96%),特异性为91%(95%CI:87 - 95%)。相比之下,读者3和读者4的特异性分别为98%和99%,灵敏度分别为74%和54%。
多类模型和二元模型仅使用矢状面MR图像,其表现与也能获取轴向序列的经验丰富的放射科医生相当。这凸显了这种新算法在提高医学成像诊断准确性和效率方面的潜力。
问题如何提高腰椎中央管狭窄症(LCCS)的分类效率?研究结果多类和二元人工智能模型仅使用矢状面MR图像,其表现与也能获取轴向序列的经验丰富的放射科医生相当。临床意义我们的人工智能算法能从矢状面MRI准确分类LCCS,与经验丰富的放射科医生表现相当。本研究为从矢状面T2 MRI自动评估LCCS提供了一个有前景的工具,可能减少对额外轴向成像的依赖。